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Post-clustering inference
Toy example
® Simulate A(0,1) +4/(—0.2,0.2)
® Ask k-means to find 2 clusters (data-driven hypothesis selection)

® Test for the difference of cluster means (inference after selection)
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Post-clustering inference

Toy example

® Simulate A(0,1) +4/(—0.2,0.2)
® Ask k-means to find 2 clusters (data-driven hypothesis selection)

® Test for the difference of cluster means (inference after selection)
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pz = 1075, ps; = 0.84 (using Chen and Witten 2023).

Adapted from Hivert et al. 2024
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Post-clustering inference

General strategy

Notation
® Let C(-) be a clustering algorithm, X a n X p random matrix with E(X) = p.
® Let X; (resp. p;) denote the i-th row of X (resp. w) for i € {1,...,n}.
® Forany G C {1,...,n}, let Xg = \?ll > ieg Xi and fig = \?ll Dieg Mi-
® Let Aél’ & c {1,...,n} be two clusters estimated by C(-) on X, that is,
C1, G € C(X).

® Consider the null hypothesis HéCI’CZ} : ﬁa = ﬁAz'

Goal

Define a p-value for Héchc?}

that controls the selective type | error, that is,

(reject H(;{CI’Q} based on X at level o

]P)Ho{él’fz} 61, 62 c C(X)) S a Vaée [O, 1]



Independence setting
Gao et al. 2022

Framework
Consider the model
X ~ MN axp (g, 1n, 021,),
and the null hypothesis
(&6 - _ -
Hy ™27 ig, = R,

for &1, & e C(X).
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Independence setting
Gao et al. 2022

Framework
Consider the model
X ~ MN s p(p, 1, 021p), (indep)
and the null hypothesis
é,¢ - _
Hé 1,62} Lhe, = Rie,s (null)

for &1, & e C(X).

Gao et al. define a p-value for (null) that
® Controls the selective type | error under (indep),

® Can be be efficiently computed for hierarchical clustering (HAC) with several
types of linkages and k-means (Chen and Witten 2023),

® |s asymptotically super-uniform when o is asymptotically over-estimated. An
estimator & of o is proposed 1.

1. Exact estimation of o has been recently proposed in Yun and Foygel Barber 2023.
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Independence is usually unrealistic

Example : clustering of flexible protein structures

Conformations can be featured by p-dimensional Gaussian descriptors (e.g.
pairwise distances between amino acids),

Features are strongly interdependent,

Conformations may be generated by molecular dynamics simulations : temporal
dependence between observations.



Arbitrary dependence setting

Adapt Gao et al. 2022 to realistic practical scenarios

Framework

Consider the model
X ~ MNpxp(p, U, X), (dep)

where U € M;xs(R) and X € Mpxp(R). We ask U and X to be positive definite. Let
G,6Y . - _
Hé L2} the, = B, (null)

for &1, & e C(X).



Arbitrary dependence setting

Adapt Gao et al. 2022 to realistic practical scenarios

Framework
Consider the model
X~ MN"><P(“’7 U7 Z): (dep)

where U € M;xs(R) and X € Mpxp(R). We ask U and X to be positive definite. Let
the, = Tig,; (null)
for &1, & e C(X).
Goal

® Definition of a p-value for (null) that controls selective type | error under (dep),

® Efficient computation for HAC and k-means clustering.

® Over-estimation of either U or X (not both) that yields asymptoticallly
super-uniform p-values.



Ignoring dependency prevents selective type | error control

® Simulate n = 1000 samples drawn from (dep) with p = O,xp and set C to
choose three clusters,

® Randomly select two groups and test for the difference of their means assuming
U=1,and X = o2l,.

U = AR(1), Z = Toeplitz (off-diagonal entries neglected)
HAC average linkage
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p-value definition

Independence setting

p-value for HO{Cl’CQ} when U = I, ¥ = 02l, (Gao et al. 2022)

G, 6 e c(x),

6 {61 1) = F, e, e (1K, — Ko, 2 = 1%, ~ 5,2
0

L .t I~ oo
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Independence setting

p-value for HO{Cl’CQ} when U = I, ¥ = 02l, (Gao et al. 2022)

G, 6 e c(x),

6 {61 1) = F, e, e (1K, — Ko, 2 = 1%, ~ 5,2
0

L .t I~ oo
wu(éh&z)x =T dlr(X@1 — sz) = dlr(xé1 — XC-Z)).

The p-value is computationally tractable (Gao et al. 2022)

A A 1 1 N
p(xi{Cr, G}) = 1—F (nw ~ %o llio f+f,sg(x;{c1,cz}))
PATa e Gl 16l

where F(t; ¢, S) denotes the CDF of a cxp random variable truncated to the set S.



p-value definition

Independence setting

p-value for H{ "' when U =1, ¥ = 021, (Gao et al. 2022)

61, 62 € C(X)7

Pl 161, 600) =, 6 (156, — Koy 2 2 g, — e,
0

1 v .= -
ﬂ“(ﬁ,fz)x (C & dlr(XC XC2) = dlr(XCl X ))

The p-value is computationally tractable (Gao et al. 2022)

p(x; {Cl, C2}) =1- IF,,(HXC1 xC2
HAC k-means

where Fp(t; ¢, S) denotes the CDF of a cx, random variable truncated to the set S.
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Choice of the test statistic

® Let G1,Go C{L,...,n} withGiNGy =10
® |let

D (a2, 9 1, 1 1%
91,02 (|gl|'f’ AR
Then, for X ~ MN % p(p, U, X), it holds

_ _ H&(gbgz}
Xg, —Xg, * ~  Np(0,Vg,g,),

where
Vg,,6, = Dg,,6,(Ug, g, ® z)Dghgf

Consequently,

Y % 2 Ho{gl)g2} 2
Xe) = Xgollvg, g, ~ ~ X

with [[xllvg, ¢, = \/*" Va6, %, Vx ERP.



p-value definition
Arbitrary dependence setting

Key idea : Replace the norm ||-||2 by the Mahalanobis distance between the cluster
means w.r.t. the null distribution of their difference.

p-value for HéCI’CZ} for arbitrary U and ¥

Pue ¢, (G C2}) = ]P’Ho{el,cz} (llxc“l = Xgllve, ¢, = X, = Xe,llve, ¢ ’ G, G € C(X),

1 _ i . Y. _ X. — di . _ T.
Toten e X = T, e Ave, o, (Ko = Xg) = dirv, o (R XCZ))'
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é.6
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p-value definition
Arbitrary dependence setting

Key idea : Replace the norm ||-||2 by the Mahalanobis distance between the cluster
means w.r.t. the null distribution of their difference.

p-value for Hécl’cz} for arbitrary U and X
Pue ¢, (G C2}) = PHO{Q,Q} (ll)?@1 - )_<@2||v@1‘é2 2 1%, = %g,llve, e, ’ G, & € C(X),

4 _ L : f XA =d; . _ T,
WV(61,62)X R dlrvfl-fz (XC1 XCZ) dlrvfpfz (Xcl XCZ)) '

Theorem : The p-value is computationally tractable (and controls sel. type | error)

Pue ¢, (X (G, G =1- Fp(H?@l =X lve, o5 | Sve, e, (% {G1, &} )

Scale trans. of S,

where Fy(t; S) denotes the CDF of a x, random variable truncated to the set S.



Numerical simulations

Three dependence settings

(a) U=1, and X is the covariance matrix of an AR(1) model, i.e. ¥;; = o2pl'=Jl,
with 0 =1 and p = 0.5.

(b) U is a compound symmetry covariance matrix, i.e. U = b+ (a — b)l,, with
a=05and b=1. X is a Toeplitz matrix, i.e. X;; = t(|/ — j|), with
t(s)=1+1/(1+s) forseN.

(¢) U is the covariance matrix of an AR(1) model with o =1 and p=0.1. X is a
diagonal matrix with diagonal entries given by X; =1+ 1/i.



Numerical simulations
Global null hypothesis

Let n =100, pt = O,xp, and set C to choose three clusters. Then, randomly select
two groups and test for the difference of their means.



Numerical simulations
Global null hypothesis

Let n =100, pt = O,xp, and set C to choose three clusters. Then, randomly select
two groups and test for the difference of their means.

@ U=I,,2=AR(1) b U=b+(a-b)l,,=="Toeplitz () U=AR(1), Sigma = Diagonal
HAC average linkage HAC average linkage HAC average linkage
1.00 1.00 1.00
0.75 0.75 0.75
w w w
8 050 Sos0 Sos0
w w w
0.25 0.25 0.25
0.00 0.00 0.001
000 025 050 0.75 1.00 000 025 050 0.75 1.00 000 025 050 0.75 1.00
p-value p-value p-value

p—5— 20 — 50



Numerical simulations

Conditional power

Conditional power = probability of rejecting the null for a randomly selected pair of
clusters given that they are different.

Let p divide the n = 50 observations into three true clusters, for § € [4,10.5] :

-5 i<l
wp=4Y2 it 2] <i<|Z), Vie{l,...n}¥je{l,...,p=10},
g otherwise.



Numerical simulations

Conditional power

Conditional power = probability of rejecting the null for a randomly selected pair of
clusters given that they are different.

Let p divide the n = 50 observations into three true clusters, for § € [4,10.5] :

(a)
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Conditional power
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Pl P
-5 ifi<|3],
pij = @ if 1] <i<|2], Vie{l,....n},Vje{l,...,p=10},
g otherwise.
U=1,,2=AR(1) ® U=b+(a-b)l,,==Toeplitz () U=AR(1), Sigma = Diagonal
| 10 1.00
J - ant a .
208 g 075
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Distance between true clusters ()
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Distance between true clusters (d)

4 6 8 10
Distance between true clusters ()

Clustering -+ HAC average -+~ HAC centroid ~+- HAC complete —+- HAC single —+ k-means



Estimation of unknown parameters

Independence setting

Let XM ~ MNpsp (815, 51,) and consider

A A 1 1 A A
p(x;{C1,G})=1—F (II>‘<A —%e |26 f+T732(X;{C17C2}))
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Estimation of unknown parameters

Independence setting

Let XM ~ MNpsp (815, 51,) and consider

A A 1 1 A A
px;{C, 6 =1-TF (||>-<A — %o 12164 | = + = S2(x; { (1, Cz}))
ATa e Gl 16|
Theorem 4 in Gao et al. 2022
If 6 is an estimator of o such that
"ILn;OP (el ey (6 (X(”)) >0 Al(n), 62(") ecC (X("))) =1, (o over-est)
O

then, for any a € [0, 1], it holds

limsupP { e el (p (x(n);{él(n)’éz(n)}) <a

n— oo




Estimation of unknown parameters

Independence setting

Let XM ~ MNpsp (815, 51,) and consider

A A 1 1 A A
B (G, G}) = 1—F (uw iy 4 S {6 a}))
ATa e Gl G
Theorem 4 in Gao et al. 2022
If 6 is an estimator of o such that
. 5 (x(M) > A(n) - A(n) (mY)) = -
nhan;oPHo{f{")fé")} (0’ (X ) >0 |GV, GV ecC (X ) 1, (o over-est)

then, for any a € [0, 1], it holds

|I’:T1_>SOL:)pP { &(n C(")} ( ( {C") C )}) <«

A e e (X(n))> <a

— Gao et al. propose an estimator & that satisfies (o over-est) under mild
assumptions on {p(M} en.




Estimation of unknown parameters
Arbitrary dependence setting

Let
X~ MNnxp(p, U, X). (dep)

Can we estimate both U and X7
® Under the general model (dep), the scale matrices U and X are non-identifiable.
® \We assume that one of the scale matrices is known, and assess the theoretical
conditions that allow asymptotic control of the selective type | error when

estimating the other one.

® Same reasoning for the estimation of U or X :

X ~ MNnxp(p, U, X) & XT ~ MNan(l-bTa ¥, U).



Estimation of unknown parameters
Arbitrary dependence setting

Let
X~ MNnxp(p, U, X). (dep)

Can we estimate both U and X7
® Under the general model (dep), the scale matrices U and X are non-identifiable.
® \We assume that one of the scale matrices is known, and assess the theoretical
conditions that allow asymptotic control of the selective type | error when

estimating the other one.

® Same reasoning for the estimation of U or X :

X ~ MNnxp(p, U, X) & XT ~ MNan(l-bTa ¥, U).

— How to extend the notion of over-estimation to matrices ?



How to over-estimate a covariance matrix

We consider the natural extension of > to the space of Hermitian matrices.
Loewner partial order >

Let A, B be two Hermitian matrices. A > B if and only if A — B is positive
semidefinite (PSD).

Remark : If A= 61, and B = olp, the condition A = B becomes § > o.



How to over-estimate a covariance matrix

We consider the natural extension of > to the space of Hermitian matrices.
Loewner partial order >

Let A, B be two Hermitian matrices. A > B if and only if A — B is positive
semidefinite (PSD).

Remark : If A= 61, and B = olp, the condition A = B becomes § > o.

Graphical interpretation
Every PSD matrix A defines an ellipsoid £4 = {x € R? : xT Ax < 1}, where

® The eigenvectors of A are the principal axes of €4,

® The eigenvalues of A are the squared lengths of the principal axes of £4.

A<B A#B

Then, it holds £4 C £ & A < B.



Over-estimation of X for known U

Let XM ~ MNxp((M, UM £) and consider

b, 0 (G e =1-F Ik, ~ 7, o,

Sy, (X,{él,fz}))

1,6

3 T
where VC & =De, CZ(UC1 & ® Z(x))DCAI’Q.



Over-estimation of X for known U
Let XM ~ MNxp((M, UM £) and consider

Sy, . (x{C, 62}))

bug, o 0 (G E) = 1= (1%, ~ R, lo, . Su,
1

L
[ee ] .G

3 T
where VC & =De, CZ(UC1 & ® Z(x))DCAI’Q.

Theorem (extension of Theorem 4 in Gao et al. 2022)
If 3 (X(") is a positive definite estimator of X such that

fim P e e, (): <x<">> . ‘ e e e e (x(">)) .

n—oo

then, for any « € [0, 1], we have

. . (m. &AM
I'mS“pPHO{é{”),éé”)} <pVC{n)‘C§n) (X ’{Cl = }) =«

n—o0o



Asymptotic over-estimator of X

Let X(n) ~ MNnXp(H(n)a U(n)v Z)

For a given estimator ¥ (X(”)) of X, assessing whether ¥ (X(”)) > X asymptotically
strongly depends on how the sequences {u("},cn and {U(M}, cx grow up to infinity.
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For a given estimator ¥ (X(”)) of X, assessing whether ¥ (X(”)) > X asymptotically
strongly depends on how the sequences {u("},cn and {U(M}, cx grow up to infinity.

Estimator candidate

1
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(X —X) Tyt (X -X), (estimator)

where X is a n X p matrix having as rows the mean across rows of X.



Asymptotic over-estimator of X

Let XM ~ MNpsp (™, UM 3,

For a given estimator s (X(”)) of X, assessing whether ) (X(”)) >~ X asymptotically
strongly depends on how the sequences {u("},cn and {U(M}, cx grow up to infinity.
Estimator candidate

1

n—1

F=3(X)= (X —X) Tyt (X -X), (estimator)
where X is a n x p matrix having as rows the mean across rows of X.

— Assumptions on {(M},cn and {U(M} < to ensure that (estimator) a.s.
asymptotically overestimates X 7



Assumptions on p(")

Assumptions 1 and 2 in Gao et al. 2022 (Assumption 1)

For all n € N, there are exactly K* distinct mean vectors among the first n
observations, i.e.

{'u‘gn)}izl,...,n = {61 O

Besides, the proportion of the first n observations that have mean vector 6y converges
to m >0, i.e.

lim * ST1{E” = 64} = i, (as-1)
i=1

n—oon 4

for all k € {1,...,K*}, where K = = 1.
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Assumptions on p(")

Assumptions 1 and 2 in Gao et al. 2022 (Assumption 1)

For all n € N, there are exactly K* distinct mean vectors among the first n
observations, i.e.

{Mgn)}izl,.”,n = {61 O

Besides, the proportion of the first n observations that have mean vector 6, converges
to m >0, i.e.

lim — Z Il{,ul =0k} = 7k, (as-1)

n—oon

for all k € {1,...,K*}, where K = = 1.

o If UM =1, this is the only requirement to ensure asymp. over-estimation of X.
o For general U("| the quantities

fZ(U) 1" = 0} 1{l"” = 0,0}

l,s=1

are also required to converge with explicit limit as n tends to infinity.



One more assumption on (" for non-diagonal U(")

Assumption on pu(") for non-diagonal U(") (Assumption 2)

If U™ is non-diagonal for all n € N, for any k, k' € {1,...,K*}, the proportion of the
first n observations at distance r > 1 in X(" having means 0, and 0, converges, and
its limit converges to m,m, s when the lag r tends to infinity. More precisely,

n—r
Jim 2} Ui = Ok} Wpinr = O} = s —2 T T (as-2)
iz

We are asking the proportion of pairs of observations having a given a pair of means
to approach the product of individual proportions (as-1) when both observations are
far away in X(7),



Assumptions on the sequence {U(”)}neN

Assumption on {U(M}, oy (Assumption 3)

. -1, . .
Every superdiagonal of (U(")) defines asymptotically a convergent sequence, whose
limits sum up to a real value. More precisely, for any i € N and any r > 0,

1 s
lim (U(")) = MNjitr, where lim Ajj, =X, and E Ar=AER.
11— 00

n—oo iitr 0
r=

Moreover, for each r > 0, the sequence {(U(n)):,‘i,}nel\l satisfies any of the following
conditions :
(i) It is dominated by a summable sequence i.e. ’(U("))Fiir —Niigr

with {a;}£2, € 41,

<a;jVneN,

(i) For each i € N, it is non-decreasing or non-increasing.



Some admissible dependence models for {U(M}, oy

Remark 1 (Diagonal)

Let UM = diag(\y, - .., An). If the sequence {An} e is convergent, then the
sequence {U(M} ¢y satisfies Assumption 3.
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sequence {U(M} ¢y satisfies Assumption 3.

Remark 2 (Compound symmetry)

Let a,b € R with b# a> 0. If U = b1y, + (a— b) 1, where 1,xpisanxn
matrix of ones, then {U(”)},,GN satisfies Assumption 3.



Some admissible dependence models for {U(M}, oy

Remark 1 (Diagonal)
Let UM = diag(\y, - .., An). If the sequence {An} e is convergent, then the
sequence {U(M} ¢y satisfies Assumption 3.

Remark 2 (Compound symmetry)

Let a,b € R with b# a> 0. If U = b1y, + (a— b) 1, where 1,xpisanxn
matrix of ones, then {U(”)},,GN satisfies Assumption 3.

Remark 3 (AR(P))

Let U(" be the covariance matrix of an auto-regressive process of order P > 1 such
that, if P > 2, BxfBe > 0 for all k, k' € {1,..., P}. Then, the sequence {U(M} <y
satisfies Assumption 3.



Estimation of X for known U

Final results

Proposition
Let X(n ~ MNpxp(p (m) yln Z) whose parameters p(", U(" satisfy Assumptions
1, 2 and 3 for some K* > 1. Let % be the estimator defined in (estimator). Then,

i (£ () 5) =1



Estimation of X for known U

Final results

Proposition
Let X(n ~ MNpxp(p (M, U, = ), whose parameters p(", U(" satisfy Assumptions
1, 2 and 3 for some K* > 1. Let % be the estimator defined in (estimator). Then,

i (£ () 5) =1

Proposition

Let X(n M/\/,,Xp(p, n Y Z) whose parameters p(", U(" satisfy Assumptions
1, 2 and 3 for some K* > 1. Let x(M be a realization of X(" and Cl("), 62(") a pair of
clusters estimated from x(". Let Y(") an independent and identically distributed copy

of X(_ Then,
. & (y(n) A(n) A(n) (n) —
nh»mm]P)H{Cl(")véz(")} (Z (Y ) =X GG EC(X )) =1.
o




Numerical simulations

Let
X ~ MNpxp(p, U, X). (dep)

For n =500 and p = 10, we simulated K = 10000 samples drawn from (dep) in
settings (a), (b) and (c) with p being divided into two clusters :

? ifis<s vie{l LVje{l }
i = i seeey N}y see s Pl
Hi - Jé otherwise, J P

with § € {4,6}.

For HAC with average linkage we set C to chose three clusters. Then, we kept the
samples for which (null) held when comparing two randomly selected clusters.



Numerical simulations

(@ U=I,,2=AR(1) ®) U=b+(a-b)l,,==Toeplitz () U=AR(1), Sigma = Diagonal
HAC average linkage HAC average linkage HAC average linkage
1.00 1 1.00 1100
0.75 0.75 0.75
w w w
8 050 2 8 050 8050
w w w
0.25 0.25 0.25
0.00 0.00 0.00
000 025 050 075 100 000 025 050 075 100 000 025 050 075 100
p-value p-value p-value

b —4—s6



Hierarchical clustering of Hstb

Hst5 ensemble simulated with Flexible-Meccano (FM)?2 and filtered by SAXS data®

® n = 2000 conformations
® Featured by pairwise Euclidean distances of 24 amino acids = p = 276
® No temporal evolution in FM simulation : U(M =1,

® ¥ unknown to be estimated

Strategy
Hierarchical clustering with average linkage, find 6 clusters.

2. Ozenne et al. Bioinformatics 2012, Bernadé et al. PNAS 2005. 3. Sagar et al. J. Chem. Theory Comput 2021.



Hierarchical clustering of Hstb

Protein conformational clustering
Clustor 1 (4:3% occupancyl Clustor 2 (32.43% ocoupancy) Clustor  (1.8% occupancy)

h b

Cluster 4 (26.63% occupancy) Cluster 5 (30.73% occupancy) Cluster 6 (4.1% occupancy)

5 |
I
s
2 B
[ 5 fo 15 0 ) 5 0 15 20

0 5 10 15 20

Sequence position

f
Sequence position

Pairwise p-values corrected for multiplicity (BH)

Cluster 1 2 3 4 5
2 2.187589-10 4
3 3.039844-10"11  1.41.1073
4 1.070993.10 10 0.300540 2.98464-10~%
5 3.038979.10 16 0.093018 6.015797-10~> 0.105446
6 1.729616-10—° 0.010612  9.200826-10~%  2.105.10~3  5.624624.107°




Thank you for your attention!

® Preprint : https://arxiv.org/abs/2310.11822,
® R package PCIdep at https://github.com/gonzalez-delgado/PCldep/.
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Truncation sets

Notation
l/(él,ég),':ﬂ{ie C’\'l}/|él‘—ﬂ{ll€ 62}/|62‘ (1)
dir(u) = u/|[ull21{u # O} @

dirv,, o () = u/llullv,, . 1{u# 0} 3)



Truncation sets

Independence setting

S ={$>0: &, G ec(x(e)},
V(Cl, éz)

4 =X+ —
) =Xt E)E

(6= I%e, = Re,ll2) dir(ze, — %¢,),

Arbitrary dependence setting
S _ . A A /
qu’c»z = {d) >0:(,Gel (X"q,q (¢)) }7
’ V(él7 C’:\‘2) - _ .
Xy. . — 2 2 5 — || Xp — XA PUN diry .
Ve, (G, Gl (9~ IR ~Relvg ;) dive

o (R, — %)

Lemma (scale transformation)

S - IXe, = %, llve, ¢, :
G,6 ”)_(61 7)_(62“2

(4)
(5)

(6)

@)

(®)



Truncation set and conditioning set

Let
Mia(X) = Mia(X; {1, G}) = {61, & € ¢(X)}, (9)
and

Ti2(X) = Ta(X; {C1, &}) =
1 _ L : Y. _ X. —di X~ — Xa
{ﬂ-l’(élvéz)x =T .6 dlrvflvfz (Xcl XC?) - dlrvfl-fz (XCl XCZ) } ’ (10)

The event My»(X) N T12(X) is the maximal event for which any analytically tractable
p-value has been shown to control the sel. type | error under the general model (dep).



Truncation set and conditioning set

We have

Pue o, (G C2}) = PH(){€1,62} <||X@1 =X lve, o, 2 IXe =% lve, ¢,
Wha(X) 1 T12(X)) . (1)
and we can write
IF A — Yy /
Sve ¢, (x{G, G}) = {¢ ER: M (Xvél,éz (¢)> } ; (12)

so that

ey o, 161, G0 = 1= (156, — R, lvg 0 {6205 2 (<, @) ]).
(13)



Truncation set and conditioning set

Finer conditioning sets

Theorem
Let 0 # E12(X) C Mia(X) = Mi2(X; {G1,G2}), Ti2(X) = T12(X; {G1,G-}) and

Pvg, g, (X {01, G2} E12) = PHéglygz} <||)_<91 —Xg,lvg, g, = X6, — %a,lIvg, g,

E12(X) N T12(X)) .

Then, Pvg, g, (x; {G1,G2}; E12) is a p-value that controls the selective type | error for
clustering at level . Furthermore, it satisfies

Pvg, g, (X {01, G2} Er2) = 1-Fp (||>'<gl — Xg,lvg, g, {¢> >0: Ep (X(/gl,gz(dﬁ) }) .

Lemma (scale transformation)

Ixe, — %e,lve o
iz (x4, . (9)) = e En (K(9)). (14)

I%e, — %¢, 12
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