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Post-clustering inference
Toy example
® Simulate A(0,1) +4/(—0.2,0.2)
® Ask k-means to find 2 clusters (data-driven hypothesis selection)

® Test for the difference of cluster means (inference after selection)
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® Ignoring adaptive selection : py = 10797,
® Accounting for adaptive selection : pas = 0.84 (Chen and Witten 2023).

Adapted from Hivert et al. 2024
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Considering the column vector vg, g, = v having as components
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Post-clustering inference

Framework setting

® Let C(-) be a clustering algorithm, X a n x p random matrix with E(X) = p.
® Let X; (resp. p;) denote the i-th row of X (resp. w) for i € [n] = {1,...,n}.
® Forany G C {1,...,n}, let Xg = \?ll Z,Eg Xi and fig = \?ll Z,Egu;.

® Let G1,G2 C {1,...,n} be two non-overlapping groups of observations.
Considering the column vector vg, g, = v having as components

vi=1{i € G1}/|G1| — 1{i € G2}/|G],
for i € [n], we can write the difference between the (empirical) group means as
~ - _ T v V. —xT
Rg, — bg, =p'v, and Xg, —Xg,=X"v.
We are interested in the following null hypothesis :

Hggl’gﬁ cpulv=0. (Ho)
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Post-clustering inference

The selective type | error for clustering

Goal : Testing (HO) by controlling the selective type | error for clustering at level «,
that is, by ensuring that :

P 161.0:) (reject Hégl’gﬁ based on X at level « ‘ G1,G0 € C(X)> <a Vae(0,1).
o

Ideal p-value :

Pideal = PH{gl,gz} (Critical region | G1,G> € C(X)).
b

Analytically tractable p-value :

Ptractable = PH{gl7g2} (Critical region | G1,G2 € C(X)N E(X)) .
o

... paying a price in power .

® Both pigeal and Piractable control the selective type | error for clustering.

1. Jewell et al. 2022, Chen et al. 2022, Liu et al. 2018, Fithian et al. 2017.
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Independence setting (1)

Gao, Bien and Witten 2022

Framework
Consider the model
XNMNnxp(u,ln,Uzlp), (indep)

that is, observations are independent and distributed as X; ~ Np (i, 021).
p-value for (HO) under (indep) (Gao, Bien and Witten 2022)
p(xi{G1,G2}) = P, 161,05} (llXTVllz > [x vl ‘ g1,G2 € C(X),
0
i X =mlx, dir(XTV) = dir(xTV)), (p-GBW)
where w5 =1, —vvT/||v|12 and dir(v) = v/||v|]2L{v # 0} for all v € RP.
The extra conditioning event allows to rewrite :

{61,G2 € C(X), - X = wix, dir(XTv) =dir(x"v)} =
{IXTv2 € Sa(x: {G1,Ga}), T X = miix, dir(XTv) =dir(x"v)}.
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0

Tl']J;X = 7&'f;X7 dir(XTV) = dir(xTV)).
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p-value for (HO) under (indep) (Gao, Bien and Witten 2022)
p(xi {01,621 = P, o000 (IXTwll2 > [T vllz | IXTv]l2 € Salxi {61, G2}),
0

T X =7wix, dir(XTv) = dir(xTu)>.

Strategy to derive a tractable form of p(x; {G1,G2})
® XTv ~ Np(0p,o?||V|31,) under (HO),
® Choice of the norm ||-||2 — ||[XTv|]2 ~ o||v|]2 - xp under (HO),
o {miX=mix, dir(XTv) =dir(xTv)} is independent of | X7 v, —

p(x; {G1,G2}) is written as the CDF of a truncated x,.

Theorem 1 in Gao, Bien and Witten 2022

p(xi {G1,G2}) =1 = Fp (X" v|l2; ollvll2, Sa(x; {G1, G2}))

where Fy(t; ¢, S) denotes the CDF of a cx, random variable truncated to the set S.




Independence setting (I1)

Gao, Bien and Witten 2022

p-value for (HO) under (indep) (Gao, Bien and Witten 2022)
P(xi {01,621 = P, o000 (IXTwll2 > T vllz | IXTv]l2 € Salxi {61, G2}),
0

m X = 7w, dir(XTv) = dir(x” ))

Strategy to derive a tractable form of p(x; {G1,G2})
® XTv ~ Np(0p,0?||v|31,) under (HO),
® Choice of the norm ||-||2 — ||[X T v|]2 ~ a||v|]2 - xp under (HO),
o {miX =mix, dir(XTv) =dir(x"v)} is independent of [|XTv|]2 —

p(x; {G1,G2}) is written as the CDF of a truncated x,.

Theorem 1 in Gao, Bien and Witten 2022
p(x;{G1,G2}) = 1 = Fp (X v[l2; ol|v]l2, | Sa(x; {G1,G2}) |)
HAC, k-means

where Fp(t; ¢, S) denotes the CDF of a cx, random variable truncated to the set S.
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Example : clustering of flexible protein structures

- Clustering

conformations
o
o
5

features
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Ignoring dependency prevents selective type | error control

® Simulate X; ~ Np(Op, X) with X, ..., X, dependent.

® Set C to choose three clusters, randomly select two groups and test for the
difference of their means assuming X = o2l, and independent observations.

U = AR(1), £ = Toeplitz (off-diagonal entries neglected)
HAC average linkage

0.00 0.25 050 0.75 1.00
p-value

p—5— 20— 50
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Arbitrary dependence setting

General strategy (I)

Framework
Consider the model

X ~ MN sip(11, U, E) € vec(X) ~ Nop(vec(pn), £ ® U), (dep)

where U € R"%" and X € RP*P are positive definite. That means :
® X; ~ Np(pi, UiX) (X > dependence between features),

® XJ ~ Np(/,Z;;U) (U <> dependence between observations).

In this model, XTv ~ A}(0p, Vg, g,) under (HO), where Vg, g, = vT UVE.
Therefore, ||X7—1/||\/g1 g, ™ Xp under (HO), where ||vH\/g1 6 =\V Vg1 g,V v ERP.

Candidate p-value for (HO) under (dep)

Pvg, ¢, (x;{G1,G2}) = ]PHO{QLQQ} (”XTVHVgl g, = ”x V||Vg1 9s G1,G2 € C(X),

7\'1,J X = 7\'1,J X, dir\/glg2 (XTI/) = dir\/glﬂ2 (XTI/))
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Candidate p-value for (HO) under (dep)

. _ T T
Pvg, g, (5 101, G2)) = P o001 (IXTvlivg, g, > IXTvivg, o,

”XTV”\Igl.gz c SVQLQQ (X; {gl,gz})7 Trle = 7TIJ;X7 C“F\/gl,g2 (XTV) = C“t‘\/glig2 (XT]/)).
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For any p X p symmetric positive definite matrix A, let Hv||% =vTA"1y and
dira(v) = v/||v||al{v # 0} for all v € RP.
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Arbitrary dependence setting

General strategy (I1)

Candidate p-value for (HO) under (dep)
Pvg, g, (5 101, G2)) = P o001 (IXTvlivg, g, > IXTvivg, o,

||X7—V||\/gl~g2 €S (x:{G1,G2}), T X =7 x, dirvg o, (XTv) = dirvg o, (XTV)).

Vg,,6

For any p X p symmetric positive definite matrix A, let Hv||% =vTA"1y and
dira(v) = v/||v||al{v # 0} for all v € RP.
Proposition

HO
(i) A=cVg, g, for some c >0 Py [1XTvg, g,lla L dira (XTvg, g,),
(i) XTvg, g, L wyigl,gzx for all (G1,G2) < U € CS(n),

where CS(n) is the class of compound symmetry positive definite matrices :

CS(n) = {(a— b)ly + blyxn : 2 >0, —Ll <b<a}.
P
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Post-clustering inference for U € CS(n)

The direct extension of the strategy of Gao et al. to the general model (dep) imposes
a compound symmetry constraint on the dependence between observations.

Theorem
Let C be a clustering algorithm and x a realization of X ~ MAN pxp(p, U, X) with

U € CS(n). Then,

Pvg, g, (i {G1,G2}) =1 - Fp(HXTVval,gz» Svg, g, (%, {G1,62})) (p-tract)

where F(t,S) is the cumulative distribution function of a x, random variable
truncated to the set S.
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Post-clustering inference for U € CS(n)

The direct extension of the strategy of Gao et al. to the general model (dep) imposes
a compound symmetry constraint on the dependence between observations.

Theorem
Let C be a clustering algorithm and x a realization of X ~ MAN pxp(p, U, X) with

U € CS(n). Then,
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where Fp(t,S) is the cumulative distribution function of a x, random variable
truncated to the set S.



Arbitrary dependence setting

Post-clustering inference for U € CS(n)

The direct extension of the strategy of Gao et al. to the general model (dep) imposes
a compound symmetry constraint on the dependence between observations.

Theorem
Let C be a clustering algorithm and x a realization of X ~ MAN pxp(p, U, X) with

U € CS(n). Then,

PVgy 06 191, G21) = 1= Fp(Ix Vlvg, o, [Sv, o, (GG ) (prtract)

Scale trans. of S

where Fp(t,S) is the cumulative distribution function of a x, random variable
truncated to the set S.

® The control of the sel. type | error is robust to moderate deviations of
U € CS(n).
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What if U ¢ CS(n)?

® The projection wﬁX is not independent of X v in general.

® Therefore, the distribution of interest is not that of X7 v, but rather that of the
conditioned vector :

Xy (x) = XTv [{mFX = 7wix, dir(XTv) = £dir(x"v)}, for x € R™¥P,
Theorem
Let C be a clustering algorithm and x a realization of X ~ MAN nxp(p, U, X). Then,
)_(,,(x) ~ Np (0,Tx),
under (HO), where
=@ r ) (ZoU-(ZaU)A (A(Z @ U)AT)A(Z @ U))(l, ®v),

A, — 7"5&,(';] ®my)
X IP®7TJJ; b

w, =lp—m}, x, = vec(myx)  and  wE =l — x[x /||x0]13.



Arbitrary U structures

Candidate p-value for (HO) under arbitrary U

pr(x; {G1,92}) = P, (01,001 (IX ¥llr, > X v,
0

G1,G2 € C(X),

mp X =7wox, dir(XTv) = idir(xTy)),

where ||v|||2.x =vTriv, VveRe.
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0
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Arbitrary U structures

Candidate p-value for (HO) under arbitrary U

pr(x;{91,92}) = P, (1.6} <||XTV||rx > [Ix"vllr, | G1. G2 € C(X),
0

7r,fX = ﬂ,fx, di]'(XTu) = idir(xTZ/))7

where [[v[2 =vTTlv, VYveRe.

Proposition
The quantity || X, (x)||r, follows x-a.s. a x1 distribution under (HO). Moreover,

pr(x {61,623) = 1= F1 (I vl Sr,(xi {G1.G2}))

where F1(t,S) is the cumulative distribution function of a x1 random variable
truncated to the set S and Sr, (x; {G1,G2}) is a scale transformation of S».

® Assessing whether pr(X; {G1,G2}) controls the selective type | error is a
challenging problem, as it requires understanding the behavior of the null

distribution of [ X, (x)[|2, = X, (x) T X, (x).
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Numerical simulations suggest the unsuitability of pr(x; {G1,G2})

(@ U = Diagonal )  U=AR(1) © U=AR(2)
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Numerical simulations suggest the unsuitability of pr(x; {G1,G2})

(@ U = Diagonal )  U=AR(1) © U=AR(2)
HAC complete linkage HAC linkage HAC complete linkage

000 025 050 075 1.00 000 025 050 075 1.00 000 025 050 075 1.00
p-value p-value p-value

Conclusion
Defining a tractable p-value that ensures the selective type | error control requires the
conditioning on events that are independent of the test statistic.
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Estimation of unknown parameters
Independence setting (Gao et al. 2022)

Let XM ~ MNpsp (815, 5%1,) and consider

p(x; {01, G2}) = 1 = Fp (IxTvllai o2, S2(x {91, G2})).

Theorem 4 in Gao et al. 2022
If 6 is an estimator of o such that

lim P
o o a{m g{My

(&(X(")) >0 ‘ gg”), gén) IS C(X("))) =1, (o over-est)
then, for any « € [0, 1], it holds

lmsup® ) o), (,3(x(n); (0", a\"y) < a‘ggn)’gén) c c(x(n))) <a.
1 72

n—o0o HO

— Gao et al. propose an estimator & that satisfies (o over-est) under mild
assumptions on {p(M} en.
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Estimation of unknown parameters
Arbitrary dependence setting

Let
X~ MN"XP(F’v U7 Z) (dep)
Can we estimate both U and X7
® Under the general model (dep), the scale matrices U and X are non-identifiable.
® Multiple copies of X are needed to simultaneously estimate U and X.

® We assume that either U or X is known :

X~ MN"XP(IJ’7 U7 z) < XT ~ MNPXU(”’T7 27 U)

— How to extend the notion of over-estimation to matrices ?

Loewner partial order >

Let A, B be two Hermitian matrices. A > B if and only if A — B is positive
semidefinite (PSD).

Remark : If A= 61, and B = olp, the condition A > B becomes 6 > o.



Over-estimation of X for known U

Let XM ~ MNpsp (M, UM 3 with UM € CS(n) and consider
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Vg0,

where Vg, g, = vTUvE(x).
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Let XM ~ MNpsp (M, UM 3 with UM € CS(n) and consider
gy 0, 101.0:1) = 1= B (IKvlgg, . iSu,, ,, ( (61.62)))

where Vg, g, = vTUvE(x).

Theorem (extension of Theorem 4 in Gao et al. 2022)
Let U € CS(n) and & (X(")) be a positive definite estimator of X such that

lim P n (n
fartios {95)195)}

(f(X(")) b X ’ gﬁ"), gé") € C(X("))> =1, (X over-est)
then, for any « € [0, 1], we have
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Over-estimation of X for known U

Let XM ~ MNpsp (M, UM 3 with UM € CS(n) and consider
gy 0, 101.0:1) = 1= B (IKvlgg, . iSu,, ,, ( (61.62)))

where Vg, g, = vTUvE(x).

Theorem (extension of Theorem 4 in Gao et al. 2022)
Let U € CS(n) and & (X(")) be a positive definite estimator of X such that

lim P

Jim H{ggn)yggn)} (i(X(")) =X ’ g}"),gé") S C(X("))> =1, (X over-est)
b

then, for any « € [0, 1], we have
n— oo

limsupP o oo (,,V (X™; {6M M) < a‘g@,gg") c C(x(n))) <o
O{g } ln Yggn)

— We propose an estimator $ that satisfies (X over-est) under mild assumptions on
{u{M} and for several common models of dependence {U("}.



Thank you for your attention!

® Preprint : https://arxiv.org/abs/2310.11822,
® R package PCIdep at https://github.com/gonzalez-delgado/PCldep/.
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Truncation sets

Independence setting

S ={$>0:G1,G € C(x(9))},
%) =x+ o (6= IKTvil) dintxT)

Arbitrary dependence setting

Svg 0, ={0>0: G106 (5, (@)},

/ _ v T . T
g, 0,(0) =X+ (6= IxTvlivg, o, ) dirvg, o, (x"¥).

Lemma (scale transformation)

.
3 _ Ix"vlvg, g, &
V51,0, X7 o]

(1)
(2

3
(4)

(5)
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Let X(n) ~ MNnXp(H(n)a U(n)v Z)
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Asymptotic over-estimator of X

Let XM ~ MNpsp (™, UM 3,

For a given estimator s (X(”)) of X, assessing whether ) (X(”)) >~ X asymptotically
strongly depends on how the sequences {u("},cn and {U(M}, cx grow up to infinity.
Estimator candidate

1

n—1

F=3(X)= (X —X) Tyt (X -X), (estimator)
where X is a n x p matrix having as rows the mean across rows of X.

— Assumptions on {(M},cn and {U(M} < to ensure that (estimator) a.s.
asymptotically overestimates X 7



Assumptions on p(")

Assumptions 1 and 2 in Gao et al. 2022 (Assumption 1)

For all n € N, there are exactly K* distinct mean vectors among the first n
observations, i.e.

{'u‘gn)}izl,...,n = {61 O

Besides, the proportion of the first n observations that have mean vector 6y converges
to m >0, i.e.

lim * ST1{E” = 64} = i, (as-1)
i=1

n—oon 4

for all k € {1,...,K*}, where K = = 1.
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Assumptions on p(")

Assumptions 1 and 2 in Gao et al. 2022 (Assumption 1)

For all n € N, there are exactly K* distinct mean vectors among the first n
observations, i.e.

{Mgn)}izl,.”,n = {61 O

Besides, the proportion of the first n observations that have mean vector 6, converges
to m >0, i.e.

lim — Z Il{,ul =0k} = 7k, (as-1)

n—oon

for all k € {1,...,K*}, where K = = 1.

o If UM =1, this is the only requirement to ensure asymp. over-estimation of X.
o For general U("| the quantities

fZ(U) 1" = 0} 1{l"” = 0,0}

l,s=1

are also required to converge with explicit limit as n tends to infinity.



One more assumption on (" for non-diagonal U(")

Assumption on pu(") for non-diagonal U(") (Assumption 2)

If U™ is non-diagonal for all n € N, for any k, k' € {1,...,K*}, the proportion of the
first n observations at distance r > 1 in X(" having means 0, and 0, converges, and
its limit converges to m,m, s when the lag r tends to infinity. More precisely,

n—r
Jim 2} Ui = Ok} Wpinr = O} = s —2 T T (as-2)
iz

We are asking the proportion of pairs of observations having a given a pair of means
to approach the product of individual proportions (as-1) when both observations are
far away in X(7),



Assumptions on the sequence {U(”)}neN

Assumption on {U(M}, oy (Assumption 3)

. -1, . .
Every superdiagonal of (U(")) defines asymptotically a convergent sequence, whose
limits sum up to a real value. More precisely, for any i € N and any r > 0,

1 s
lim (U(")) = MNjitr, where lim Ajj, =X, and E Ar=AER.
11— 00

n—oo iitr 0
r=

Moreover, for each r > 0, the sequence {(U(n)):,‘i,}nel\l satisfies any of the following
conditions :
(i) It is dominated by a summable sequence i.e. ’(U("))Fiir —Niigr

with {a;}£2, € 41,

<a;jVneN,

(i) For each i € N, it is non-decreasing or non-increasing.



Some admissible dependence models for {U(M}, oy

Remark 1 (Diagonal)

Let UM = diag(\y, - .., An). If the sequence {An} e is convergent, then the
sequence {U(M} ¢y satisfies Assumption 3.
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Some admissible dependence models for {U(M}, oy

Remark 1 (Diagonal)
Let UM = diag(\y, - .., An). If the sequence {An} e is convergent, then the
sequence {U(M} ¢y satisfies Assumption 3.

Remark 2 (Compound symmetry)

Let a,b € R with b# a> 0. If U = b1y, + (a— b) 1, where 1,xpisanxn
matrix of ones, then {U(”)},,GN satisfies Assumption 3.

Remark 3 (AR(P))

Let U(" be the covariance matrix of an auto-regressive process of order P > 1 such
that, if P > 2, BxfBe > 0 for all k, k' € {1,..., P}. Then, the sequence {U(M} <y
satisfies Assumption 3.



Numerical simulations

Three dependence settings

(a) U=1, and X is the covariance matrix of an AR(1) model, i.e. ¥;; = o2pl'=Jl,
with 0 =1 and p = 0.5.

(b) U is a compound symmetry covariance matrix, i.e. U = b+ (a — b)l,, with
a=05and b=1. X is a Toeplitz matrix, i.e. X;; = t(|/ — j|), with
t(s)=1+1/(1+s) forseN.

(¢) U is the covariance matrix of an AR(1) model with o =1 and p=0.1. X is a
diagonal matrix with diagonal entries given by X; =1+ 1/i.



Numerical simulations
Global null hypothesis

Let n =100, pt = O,xp, and set C to choose three clusters. Then, randomly select
two groups and test for the difference of their means.



Numerical simulations
Global null hypothesis

Let n =100, pt = O,xp, and set C to choose three clusters. Then, randomly select
two groups and test for the difference of their means.

@ U=I,,2=AR(1) b U=b+(a-b)l,,=="Toeplitz () U=AR(1), Sigma = Diagonal
HAC average linkage HAC average linkage HAC average linkage
1.00 1.00 1.00
0.75 0.75 0.75
w w w
8 050 Sos0 Sos0
w w w
0.25 0.25 0.25
0.00 0.00 0.001
000 025 050 0.75 1.00 000 025 050 0.75 1.00 000 025 050 0.75 1.00
p-value p-value p-value

p—5— 20 — 50



Numerical simulations

Conditional power

Conditional power = probability of rejecting the null for a randomly selected pair of
clusters given that they are different.

Let p divide the n = 50 observations into three true clusters, for § € [4,10.5] :

-5 i<l
wp=4Y it 2] <i<|Z), Vie{l,..,n}¥je{l,...,p=10},
g otherwise.



Numerical simulations

Conditional power

Conditional power = probability of rejecting the null for a randomly selected pair of
clusters given that they are different.

Let p divide the n = 50 observations into three true clusters, for § € [4,10.5] :

(a)

1.00

)
S
&

Conditional power
g

o
i
&

Pl P
-5 ifi<|3],
pij = @ if (1] <i<|Z], Vie{l,....n},Vje{l,...,p=10},
g otherwise.
U=1,,2=AR(1) ® U=b+(a-b)l,,==Toeplitz () U=AR(1), Sigma = Diagonal
| 10 1.00
J - ant a .
208 g 075
Q (=%
K K
%06 %o.so
5 5
o o
0.25
0.4

Ll

4 6 8 10

Distance between true clusters ()

6 8 10
Distance between true clusters (d)

4 6 8 10
Distance between true clusters ()

Clustering -+ HAC average -+~ HAC centroid ~+- HAC complete —+- HAC single —+ k-means



Numerical simulations

Let
X ~ MNpxp(p, U, X). (dep)

For n =500 and p = 10, we simulated K = 10000 samples drawn from (dep) in
settings (a), (b) and (c) with p being divided into two clusters :

? ifis<s vie{l LVje{l }
i = i seeey N}y see s Pl
Hi - Jé otherwise, J P

with § € {4,6}.

For HAC with average linkage we set C to chose three clusters. Then, we kept the
samples for which (HO) held when comparing two randomly selected clusters.



Numerical simulations

(@ U=I,,2=AR(1) ®) U=b+(a-b)l,,==Toeplitz () U=AR(1), Sigma = Diagonal
HAC average linkage HAC average linkage HAC average linkage
1.00 1 1.00 1100
0.75 0.75 0.75
w w w
8 050 2 8 050 8050
w w w
0.25 0.25 0.25
0.00 0.00 0.00
000 025 050 075 100 000 025 050 075 100 000 025 050 075 100
p-value p-value p-value

b —4—s6



Hierarchical clustering of Hstb

Hst5 ensemble simulated with Flexible-Meccano (FM)?2 and filtered by SAXS data®

® n = 2000 conformations
® Featured by pairwise Euclidean distances of 24 amino acids = p = 276
® No temporal evolution in FM simulation : U(M =1,

® ¥ unknown to be estimated

Strategy
Hierarchical clustering with average linkage, find 6 clusters.

2. Ozenne et al. Bioinformatics 2012, Bernadé et al. PNAS 2005. 3. Sagar et al. J. Chem. Theory Comput 2021.



Hierarchical clustering of Hstb

Protein conformational clustering
Clustor 1 (4:3% occupancyl Clustor 2 (32.43% ocoupancy) Clustor  (1.8% occupancy)

h b

Cluster 4 (26.63% occupancy) Cluster 5 (30.73% occupancy) Cluster 6 (4.1% occupancy)

5 |
I
s
2 B
[ 5 fo 15 0 ) 5 0 15 20

0 5 10 15 20

Sequence position

f
Sequence position

Pairwise p-values corrected for multiplicity (BH)

Cluster 1 2 3 4 5
2 2.187589-10 4
3 3.039844-10"11  1.41.1073
4 1.070993.10 10 0.300540 2.98464-10~%
5 3.038979.10 16 0.093018 6.015797-10~> 0.105446
6 1.729616-10—° 0.010612  9.200826-10~%  2.105.10~3  5.624624.107°
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