Post-clustering inference under dependency

Javier González-Delgado¹, Mathis Deronzier², Juan Cortés³ and Pierre Neuvial²

1. University of Rennes, ENSAI, CREST, 2. Institut de Mathématiques de Toulouse, 3. LAAS-CNRS

13th International Conference on Multiple Comparison Procedures (MCP-2025)

August 15, 2025

Toy example

• Simulate $\mathcal{N}(0,1) + \mathcal{U}(-0.2,0.2)$

- Simulate $\mathcal{N}(0,1) + \mathcal{U}(-0.2,0.2)$
- Ask k-means to find 2 clusters (data-driven hypothesis selection)

- Simulate $\mathcal{N}(0,1) + \mathcal{U}(-0.2,0.2)$
- Ask k-means to find 2 clusters (data-driven hypothesis selection)
- Test for the difference of cluster means (inference after selection)

- Simulate $\mathcal{N}(0,1) + \mathcal{U}(-0.2,0.2)$
- Ask k-means to find 2 clusters (data-driven hypothesis selection)
- Test for the difference of cluster means (inference after selection)

- Ignoring adaptive selection : $p_Z = 10^{-67}$,
- Accounting for adaptive selection : $p_{AS} = 0.84$ (Chen and Witten 2023).

Framework setting

• Let $C(\cdot)$ be a clustering algorithm, **X** a $n \times p$ random matrix with $\mathbb{E}(\mathbf{X}) = \mu$.

Framework setting

- Let $C(\cdot)$ be a clustering algorithm, **X** a $n \times p$ random matrix with $\mathbb{E}(\mathbf{X}) = \mu$.
- Let X_i (resp. μ_i) denote the *i*-th row of **X** (resp. μ) for $i \in [n] = \{1, \dots, n\}$.

Framework setting

- Let $C(\cdot)$ be a clustering algorithm, **X** a $n \times p$ random matrix with $\mathbb{E}(\mathbf{X}) = \mu$.
- Let X_i (resp. μ_i) denote the i-th row of \mathbf{X} (resp. μ) for $i \in [n] = \{1, \dots, n\}$.
- For any $\mathcal{G} \subset \{1,\ldots,n\}$, let $\bar{X}_{\mathcal{G}} = \frac{1}{|\mathcal{G}|} \sum_{i \in \mathcal{G}} X_i$ and $\bar{\mu}_{\mathcal{G}} = \frac{1}{|\mathcal{G}|} \sum_{i \in \mathcal{G}} \mu_i$.

Framework setting

- Let $C(\cdot)$ be a clustering algorithm, **X** a $n \times p$ random matrix with $\mathbb{E}(\mathbf{X}) = \mu$.
- Let X_i (resp. μ_i) denote the i-th row of \mathbf{X} (resp. μ) for $i \in [n] = \{1, \dots, n\}$.
- For any $\mathcal{G}\subset\{1,\ldots,n\}$, let $\bar{X}_{\mathcal{G}}=\frac{1}{|\mathcal{G}|}\sum_{i\in\mathcal{G}}X_i$ and $\bar{\mu}_{\mathcal{G}}=\frac{1}{|\mathcal{G}|}\sum_{i\in\mathcal{G}}\mu_i$.
- Let $\mathcal{G}_1,\mathcal{G}_2\subset\{1,\ldots,n\}$ be two non-overlapping groups of observations. Considering the column vector $\nu_{\mathcal{G}_1,\mathcal{G}_2}=\nu$ having as components

$$\nu_i = \mathbb{1}\{i \in \mathcal{G}_1\}/|\mathcal{G}_1| - \mathbb{1}\{i \in \mathcal{G}_2\}/|\mathcal{G}_2|,$$

for $i \in [n]$,

Framework setting

- Let $C(\cdot)$ be a clustering algorithm, **X** a $n \times p$ random matrix with $\mathbb{E}(\mathbf{X}) = \mu$.
- Let X_i (resp. μ_i) denote the *i*-th row of **X** (resp. μ) for $i \in [n] = \{1, ..., n\}$.
- For any $\mathcal{G}\subset\{1,\ldots,n\}$, let $\bar{X}_{\mathcal{G}}=\frac{1}{|\mathcal{G}|}\sum_{i\in\mathcal{G}}X_i$ and $\bar{\mu}_{\mathcal{G}}=\frac{1}{|\mathcal{G}|}\sum_{i\in\mathcal{G}}\mu_i$.
- Let $\mathcal{G}_1,\mathcal{G}_2\subset\{1,\ldots,n\}$ be two non-overlapping groups of observations. Considering the column vector $\nu_{\mathcal{G}_1,\mathcal{G}_2}=\nu$ having as components

$$\nu_i = \mathbb{1}\{i \in \mathcal{G}_1\}/|\mathcal{G}_1| - \mathbb{1}\{i \in \mathcal{G}_2\}/|\mathcal{G}_2|,$$

for $i \in [n]$, we can write the difference between the (empirical) group means as

$$\bar{\mu}_{\mathcal{G}_1} - \bar{\mu}_{\mathcal{G}_2} = \boldsymbol{\mu}^T \nu$$
, and $\bar{X}_{\mathcal{G}_1} - \bar{X}_{\mathcal{G}_2} = \boldsymbol{X}^T \nu$.

Framework setting

- Let $C(\cdot)$ be a clustering algorithm, **X** a $n \times p$ random matrix with $\mathbb{E}(\mathbf{X}) = \mu$.
- Let X_i (resp. μ_i) denote the *i*-th row of **X** (resp. μ) for $i \in [n] = \{1, \dots, n\}$.
- For any $\mathcal{G}\subset\{1,\ldots,n\}$, let $\bar{X}_{\mathcal{G}}=\frac{1}{|\mathcal{G}|}\sum_{i\in\mathcal{G}}X_i$ and $\bar{\mu}_{\mathcal{G}}=\frac{1}{|\mathcal{G}|}\sum_{i\in\mathcal{G}}\mu_i$.
- Let $\mathcal{G}_1, \mathcal{G}_2 \subset \{1, \dots, n\}$ be two non-overlapping groups of observations. Considering the column vector $\nu_{\mathcal{G}_1, \mathcal{G}_2} = \nu$ having as components

$$\nu_i = \mathbb{1}\{i \in \mathcal{G}_1\}/|\mathcal{G}_1| - \mathbb{1}\{i \in \mathcal{G}_2\}/|\mathcal{G}_2|,$$

for $i \in [n]$, we can write the difference between the (empirical) group means as

$$\bar{\mu}_{\mathcal{G}_1} - \bar{\mu}_{\mathcal{G}_2} = \boldsymbol{\mu}^T \boldsymbol{\nu}, \quad \text{and} \quad \bar{X}_{\mathcal{G}_1} - \bar{X}_{\mathcal{G}_2} = \boldsymbol{X}^T \boldsymbol{\nu}.$$

We are interested in the following null hypothesis:

$$H_0^{\{\mathcal{G}_1,\mathcal{G}_2\}}: \boldsymbol{\mu}^T \nu = 0.$$
 (H0)

The selective type I error for clustering

Goal : Testing (H0) by controlling the selective type I error for clustering at level α , that is, by ensuring that :

$$\mathbb{P}_{H_0^{\{\mathcal{G}_1,\mathcal{G}_2\}}}\left(\text{reject }H_0^{\{\mathcal{G}_1,\mathcal{G}_2\}}\text{ based on }\textbf{X}\text{ at level }\alpha\ \bigg|\ \mathcal{G}_1,\mathcal{G}_2\in\mathcal{C}(\textbf{X})\right)\leq\alpha\quad\forall\,\alpha\in(0,1).$$

The selective type I error for clustering

Goal : Testing (H0) by controlling the selective type I error for clustering at level α , that is, by ensuring that :

$$\mathbb{P}_{H_0^{\{\mathcal{G}_1,\mathcal{G}_2\}}}\left(\text{reject }H_0^{\{\mathcal{G}_1,\mathcal{G}_2\}}\text{ based on }\textbf{X}\text{ at level }\alpha\ \bigg|\ \mathcal{G}_1,\mathcal{G}_2\in\mathcal{C}(\textbf{X})\right)\leq\alpha\quad\forall\,\alpha\in(0,1).$$

Ideal p-value:

$$p_{\mathsf{ideal}} = \mathbb{P}_{H_0^{\{\mathcal{G}_1,\mathcal{G}_2\}}} \left(\mathsf{Critical region} \, \middle| \, \mathcal{G}_1, \mathcal{G}_2 \in \mathcal{C}(\mathbf{X}) \right).$$

The selective type I error for clustering

Goal : Testing (H0) by controlling the selective type I error for clustering at level α , that is, by ensuring that :

$$\mathbb{P}_{H_0^{\{\mathcal{G}_1,\mathcal{G}_2\}}}\left(\text{reject }H_0^{\{\mathcal{G}_1,\mathcal{G}_2\}}\text{ based on }\textbf{X}\text{ at level }\alpha\ \bigg|\ \mathcal{G}_1,\mathcal{G}_2\in\mathcal{C}(\textbf{X})\right)\leq\alpha\quad\forall\,\alpha\in(0,1).$$

Ideal p-value:

$$p_{\mathsf{ideal}} = \mathbb{P}_{H_0^{\{\mathcal{G}_1,\mathcal{G}_2\}}}igg(\mathsf{Critical\ region}\,igg|\,\mathcal{G}_1,\mathcal{G}_2 \in \mathcal{C}(\mathbf{X})igg).$$

Analytically tractable p-value:

$$p_{\mathsf{tractable}} = \mathbb{P}_{H_0^{\{\mathcal{G}_1,\mathcal{G}_2\}}} \left(\mathsf{Critical\ region} \,\middle|\, \mathcal{G}_1,\mathcal{G}_2 \in \mathcal{C}(\mathbf{X}) \cap E(\mathbf{X}) \right).$$

... paying a price in power 1.

^{1.} Jewell et al. 2022, Chen et al. 2022, Liu et al. 2018, Fithian et al. 2017.

The selective type I error for clustering

Goal : Testing (H0) by controlling the selective type I error for clustering at level α , that is, by ensuring that :

$$\mathbb{P}_{H_0^{\{\mathcal{G}_1,\mathcal{G}_2\}}}\left(\text{reject }H_0^{\{\mathcal{G}_1,\mathcal{G}_2\}}\text{ based on }\textbf{X}\text{ at level }\alpha\ \bigg|\ \mathcal{G}_1,\mathcal{G}_2\in\mathcal{C}(\textbf{X})\right)\leq\alpha\quad\forall\,\alpha\in(0,1).$$

Ideal p-value:

$$p_{\mathsf{ideal}} = \mathbb{P}_{H_0^{\{\mathcal{G}_1,\mathcal{G}_2\}}}igg(\mathsf{Critical\ region}\,igg|\,\mathcal{G}_1,\mathcal{G}_2 \in \mathcal{C}(\mathbf{X})igg).$$

Analytically tractable p-value:

$$p_{\mathsf{tractable}} = \mathbb{P}_{H_0^{\{\mathcal{G}_1,\mathcal{G}_2\}}} \left(\mathsf{Critical\ region} \,\middle|\, \mathcal{G}_1,\mathcal{G}_2 \in \mathcal{C}(\mathbf{X}) \cap E(\mathbf{X}) \right).$$

... paying a price in power 1.

• Both p_{ideal} and $p_{tractable}$ control the selective type I error for clustering.

^{1.} Jewell et al. 2022, Chen et al. 2022, Liu et al. 2018, Fithian et al. 2017.

Gao, Bien and Witten 2022

Framework

Consider the model

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{I}_n, \sigma^2 \mathbf{I}_p),$$
 (indep)

Gao, Bien and Witten 2022

Framework

Consider the model

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{I}_n, \sigma^2 \mathbf{I}_p),$$
 (indep)

that is, observations are independent

Gao, Bien and Witten 2022

Framework

Consider the model

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{I}_n, \sigma^2 \mathbf{I}_p),$$
 (indep)

that is, observations are independent and distributed as $X_i \sim \mathcal{N}_p(\mu_i, \sigma^2 \mathbf{I}_p)$.

Gao, Bien and Witten 2022

Framework

Consider the model

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{I}_n, \sigma^2 \mathbf{I}_p),$$
 (indep)

that is, observations are independent and distributed as $X_i \sim \mathcal{N}_p(\mu_i, \sigma^2 \mathbf{I}_p)$.

p-value for (H0) under (indep) (Gao, Bien and Witten 2022)

$$p(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}) = \mathbb{P}_{H_0^{\{\mathcal{G}_1, \mathcal{G}_2\}}} \left(\|\mathbf{X}^T \nu\|_2 \ge \|\mathbf{x}^T \nu\|_2 \mid \mathcal{G}_1, \mathcal{G}_2 \in \mathcal{C}(\mathbf{X}), \right)$$

(p-GBW)

Gao, Bien and Witten 2022

Framework

Consider the model

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{I}_n, \sigma^2 \mathbf{I}_p),$$
 (indep)

that is, observations are independent and distributed as $X_i \sim \mathcal{N}_p(\mu_i, \sigma^2 \mathbf{I}_p)$.

p-value for (H0) under (indep) (Gao, Bien and Witten 2022)

$$p(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}) = \mathbb{P}_{H_0^{\{\mathcal{G}_1, \mathcal{G}_2\}}} \left(\|\mathbf{X}^T \boldsymbol{\nu}\|_2 \ge \|\mathbf{x}^T \boldsymbol{\nu}\|_2 \mid \mathcal{G}_1, \mathcal{G}_2 \in \mathcal{C}(\mathbf{X}), \right.$$
$$\boldsymbol{\pi}_{\boldsymbol{\nu}}^{\perp} \mathbf{X} = \boldsymbol{\pi}_{\boldsymbol{\nu}}^{\perp} \mathbf{x}, \operatorname{dir}(\mathbf{X}^T \boldsymbol{\nu}) = \operatorname{dir}(\mathbf{x}^T \boldsymbol{\nu}) \right), \qquad \text{(p-GBW)}$$

where $\pi_{\nu}^{\perp} = \mathbf{I}_n - \nu \nu^T / \|\nu\|_2^2$ and $\operatorname{dir}(v) = v / \|v\|_2 \mathbb{1}\{v \neq 0\}$ for all $v \in \mathbb{R}^p$.

Gao, Bien and Witten 2022

Framework

Consider the model

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{I}_n, \sigma^2 \mathbf{I}_p),$$
 (indep)

that is, observations are independent and distributed as $X_i \sim \mathcal{N}_p(\mu_i, \sigma^2 \mathbf{I}_p)$.

p-value for (H0) under (indep) (Gao, Bien and Witten 2022)

$$p(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}) = \mathbb{P}_{H_0^{\{\mathcal{G}_1, \mathcal{G}_2\}}} \left(\|\mathbf{X}^T \boldsymbol{\nu}\|_2 \ge \|\mathbf{x}^T \boldsymbol{\nu}\|_2 \mid \mathcal{G}_1, \mathcal{G}_2 \in \mathcal{C}(\mathbf{X}), \right.$$
$$\boldsymbol{\pi}_{\boldsymbol{\nu}}^{\perp} \mathbf{X} = \boldsymbol{\pi}_{\boldsymbol{\nu}}^{\perp} \mathbf{x}, \operatorname{dir}(\mathbf{X}^T \boldsymbol{\nu}) = \operatorname{dir}(\mathbf{x}^T \boldsymbol{\nu}) \right), \qquad \text{(p-GBW)}$$

where $\pi_{\nu}^{\perp} = \mathbf{I}_n - \nu \nu^T / \|\nu\|_2^2$ and $\operatorname{dir}(v) = v / \|v\|_2 \mathbb{1}\{v \neq 0\}$ for all $v \in \mathbb{R}^p$.

The extra conditioning event allows to rewrite :

$$\begin{aligned} \{\mathcal{G}_1,\mathcal{G}_2 \in \mathcal{C}(\mathbf{X}), \boldsymbol{\pi}_{\nu}^{\perp} \mathbf{X} = \boldsymbol{\pi}_{\nu}^{\perp} \mathbf{x}, \operatorname{dir}(\mathbf{X}^T \nu) = \operatorname{dir}(\mathbf{x}^T \nu)\} &: \\ \{\|\mathbf{X}^T \nu\|_2 \in \mathcal{S}_2(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}), \, \boldsymbol{\pi}_{\nu}^{\perp} \mathbf{X} = \boldsymbol{\pi}_{\nu}^{\perp} \mathbf{x}, \operatorname{dir}(\mathbf{X}^T \nu) = \operatorname{dir}(\mathbf{x}^T \nu)\}. \end{aligned}$$

Gao, Bien and Witten 2022

p-value for (H0) under (indep) (Gao, Bien and Witten 2022)
$$p(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}) = \mathbb{P}_{H_0^{\{\mathcal{G}_1, \mathcal{G}_2\}}} \Big(\|\mathbf{X}^T \boldsymbol{\nu}\|_2 \geq \|\mathbf{x}^T \boldsymbol{\nu}\|_2 \ \Big| \ \|\mathbf{X}^T \boldsymbol{\nu}\|_2 \in \mathcal{S}_2(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}),$$

$$\boldsymbol{\pi}_{\boldsymbol{\nu}}^{\perp} \mathbf{X} = \boldsymbol{\pi}_{\boldsymbol{\nu}}^{\perp} \mathbf{x}, \ \mathrm{dir}(\mathbf{X}^T \boldsymbol{\nu}) = \mathrm{dir}(\mathbf{x}^T \boldsymbol{\nu}) \Big).$$

Gao, Bien and Witten 2022

p-value for (H0) under (indep) (Gao, Bien and Witten 2022)

$$\begin{split} \rho(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}) &= \mathbb{P}_{H_0^{\{\mathcal{G}_1, \mathcal{G}_2\}}} \Big(\|\mathbf{X}^T \boldsymbol{\nu}\|_2 \geq \|\mathbf{x}^T \boldsymbol{\nu}\|_2 \; \Big| \; \|\mathbf{X}^T \boldsymbol{\nu}\|_2 \in \mathcal{S}_2(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}), \\ \pi_{\boldsymbol{\nu}}^{\perp} \mathbf{X} &= \pi_{\boldsymbol{\nu}}^{\perp} \mathbf{x} \,, \, \mathrm{dir} \big(\mathbf{X}^T \boldsymbol{\nu}\big) = \mathrm{dir} \big(\mathbf{x}^T \boldsymbol{\nu}\big) \Big). \end{split}$$

Strategy to derive a tractable form of $p(x; \{G_1, G_2\})$

• $\mathbf{X}^T \nu \sim \mathcal{N}_p(\mathbf{0}_p, \sigma^2 || \nu ||_2^2 \mathbf{I}_p)$ under (H0),

Gao, Bien and Witten 2022

p-value for (H0) under (indep) (Gao, Bien and Witten 2022)

$$\begin{split} \rho(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}) &= \mathbb{P}_{H_0^{\{\mathcal{G}_1, \mathcal{G}_2\}}} \Big(\|\mathbf{X}^T \boldsymbol{\nu}\|_2 \geq \|\mathbf{x}^T \boldsymbol{\nu}\|_2 \; \Big| \; \|\mathbf{X}^T \boldsymbol{\nu}\|_2 \in \mathcal{S}_2(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}), \\ \pi_{\boldsymbol{\nu}}^{\perp} \mathbf{X} &= \pi_{\boldsymbol{\nu}}^{\perp} \mathbf{x} \,, \, \mathrm{dir} \big(\mathbf{X}^T \boldsymbol{\nu}\big) = \mathrm{dir} \big(\mathbf{x}^T \boldsymbol{\nu}\big) \Big). \end{split}$$

Strategy to derive a tractable form of $p(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\})$

- $\mathbf{X}^T \nu \sim \mathcal{N}_p(\mathbf{0}_p, \sigma^2 || \nu ||_2^2 \mathbf{I}_p)$ under (H0),
- Choice of the norm $\|\cdot\|_2 \to \|\mathbf{X}^T \nu\|_2 \sim \sigma \|\nu\|_2 \cdot \chi_p$ under (H0),

Gao, Bien and Witten 2022

p-value for (H0) under (indep) (Gao, Bien and Witten 2022)

$$\begin{split} \textit{p}(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}) &= \mathbb{P}_{\textit{H}_0^{\{\mathcal{G}_1, \mathcal{G}_2\}}} \Big(\|\mathbf{X}^T \boldsymbol{\nu}\|_2 \geq \|\mathbf{x}^T \boldsymbol{\nu}\|_2 \; \Big| \; \|\mathbf{X}^T \boldsymbol{\nu}\|_2 \in \mathcal{S}_2(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}), \\ \pi_{\boldsymbol{\nu}}^{\perp} \mathbf{X} &= \pi_{\boldsymbol{\nu}}^{\perp} \mathbf{x} \,, \, \text{dir} \big(\mathbf{X}^T \boldsymbol{\nu}\big) = \text{dir} \big(\mathbf{x}^T \boldsymbol{\nu}\big) \Big). \end{split}$$

Strategy to derive a tractable form of $p(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\})$

- $\mathbf{X}^T \nu \sim \mathcal{N}_p(\mathbf{0}_p, \sigma^2 || \nu ||_2^2 \mathbf{I}_p)$ under (H0),
- Choice of the norm $\|\cdot\|_2 \to \|\mathbf{X}^T \nu\|_2 \sim \sigma \|\nu\|_2 \cdot \chi_p$ under (H0),
- $\{\pi_{\nu}^{\perp}\mathbf{X} = \pi_{\nu}^{\perp}\mathbf{x}, \operatorname{dir}(\mathbf{X}^{T}\nu) = \operatorname{dir}(\mathbf{x}^{T}\nu)\}\$ is independent of $\|\mathbf{X}^{T}\nu\|_{2} \rightarrow p(\mathbf{x}; \{\mathcal{G}_{1}, \mathcal{G}_{2}\})$ is written as the CDF of a truncated χ_{ρ} .

Gao, Bien and Witten 2022

p-value for (H0) under (indep) (Gao, Bien and Witten 2022)

$$\begin{split} p(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}) &= \mathbb{P}_{H_0^{\{\mathcal{G}_1, \mathcal{G}_2\}}} \Big(\|\mathbf{X}^T \boldsymbol{\nu}\|_2 \geq \|\mathbf{x}^T \boldsymbol{\nu}\|_2 \; \Big| \; \|\mathbf{X}^T \boldsymbol{\nu}\|_2 \in \mathcal{S}_2(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}), \\ \pi_{\boldsymbol{\nu}}^{\perp} \mathbf{X} &= \pi_{\boldsymbol{\nu}}^{\perp} \mathbf{x} \,, \, \text{dir} \big(\mathbf{X}^T \boldsymbol{\nu}\big) = \text{dir} \big(\mathbf{x}^T \boldsymbol{\nu}\big) \Big). \end{split}$$

Strategy to derive a tractable form of $p(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\})$

- $\mathbf{X}^T \nu \sim \mathcal{N}_p(\mathbf{0}_p, \sigma^2 || \nu ||_2^2 \mathbf{I}_p)$ under (H0),
- Choice of the norm $\|\cdot\|_2 \to \|\mathbf{X}^T \nu\|_2 \sim \sigma \|\nu\|_2 \cdot \chi_p$ under (H0),
- $\{\pi_{\nu}^{\perp}\mathbf{X} = \pi_{\nu}^{\perp}\mathbf{x}, \operatorname{dir}(\mathbf{X}^{T}\nu) = \operatorname{dir}(\mathbf{x}^{T}\nu)\}\$ is independent of $\|\mathbf{X}^{T}\nu\|_{2} \rightarrow p(\mathbf{x}; \{\mathcal{G}_{1}, \mathcal{G}_{2}\})$ is written as the CDF of a truncated χ_{p} .

Theorem 1 in Gao. Bien and Witten 2022

$$p(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}) = 1 - \mathbb{F}_p(\|\mathbf{X}^T \nu\|_2; \sigma \|\nu\|_2, \mathcal{S}_2(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}))$$

where $\mathbb{F}_p(t; c, S)$ denotes the CDF of a $c\chi_p$ random variable truncated to the set S.

Gao, Bien and Witten 2022

p-value for (H0) under (indep) (Gao, Bien and Witten 2022)

$$\begin{split} p(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}) &= \mathbb{P}_{H_0^{\{\mathcal{G}_1, \mathcal{G}_2\}}} \Big(\|\mathbf{X}^T \boldsymbol{\nu}\|_2 \geq \|\mathbf{x}^T \boldsymbol{\nu}\|_2 \; \Big| \; \|\mathbf{X}^T \boldsymbol{\nu}\|_2 \in \mathcal{S}_2(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}), \\ \pi_{\boldsymbol{\nu}}^{\perp} \mathbf{X} &= \pi_{\boldsymbol{\nu}}^{\perp} \mathbf{x} \,, \, \mathrm{dir} \big(\mathbf{X}^T \boldsymbol{\nu}\big) = \mathrm{dir} \big(\mathbf{x}^T \boldsymbol{\nu}\big) \Big). \end{split}$$

Strategy to derive a tractable form of $p(x; \{G_1, G_2\})$

- $\mathbf{X}^T \nu \sim \mathcal{N}_{\mathcal{D}}(\mathbf{0}_{\mathcal{D}}, \sigma^2 || \nu ||_2^2 \mathbf{I}_{\mathcal{D}})$ under (H0),
- Choice of the norm $\|\cdot\|_2 \to \|\mathbf{X}^T \nu\|_2 \sim \sigma \|\nu\|_2 \cdot \chi_p$ under (H0),
- $\{\pi_{\nu}^{\perp}\mathbf{X} = \pi_{\nu}^{\perp}\mathbf{x}, \operatorname{dir}(\mathbf{X}^{T}\nu) = \operatorname{dir}(\mathbf{x}^{T}\nu)\}\$ is independent of $\|\mathbf{X}^{T}\nu\|_{2} \rightarrow p(\mathbf{x}; \{\mathcal{G}_{1}, \mathcal{G}_{2}\})$ is written as the CDF of a truncated χ_{p} .

Theorem 1 in Gao, Bien and Witten 2022

$$p(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}) = 1 - \mathbb{F}_p(\|\mathbf{X}^T \nu\|_2; \sigma \|\nu\|_2, \boxed{\mathcal{S}_2(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\})}$$
HAC. k-means

where $\mathbb{F}_p(t; c, S)$ denotes the CDF of a $c\chi_p$ random variable truncated to the set S.

Independence is usually unrealistic

Example: clustering of flexible protein structures

Independence is usually unrealistic

Example: clustering of flexible protein structures

Ignoring dependency prevents selective type I error control

• Simulate $X_i \sim \mathcal{N}_p(\mathbf{O}_p, \mathbf{\Sigma})$ with X_1, \dots, X_n dependent.

Ignoring dependency prevents selective type I error control

- Simulate $X_i \sim \mathcal{N}_p(\mathbf{O}_p, \mathbf{\Sigma})$ with X_1, \dots, X_n dependent.
- Set $\mathcal C$ to choose three clusters, randomly select two groups and test for the difference of their means assuming $\mathbf \Sigma = \sigma^2 \mathbf I_p$ and independent observations.

Ignoring dependency prevents selective type I error control

- Simulate $X_i \sim \mathcal{N}_p(\mathbf{O}_p, \mathbf{\Sigma})$ with X_1, \dots, X_n dependent.
- Set C to choose three clusters, randomly select two groups and test for the difference of their means assuming Σ = σ²I_p and independent observations.

Arbitrary dependence setting

General strategy (I)

Framework

Consider the model

$$\textbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \textbf{U}, \boldsymbol{\Sigma}) \Leftrightarrow \text{vec}(\textbf{X}) \sim \mathcal{N}_{np}(\text{vec}(\boldsymbol{\mu}), \boldsymbol{\Sigma} \otimes \textbf{U}), \tag{dep}$$

where $\mathbf{U} \in \mathbb{R}^{n \times n}$ and $\mathbf{\Sigma} \in \mathbb{R}^{p \times p}$ are positive definite.

Arbitrary dependence setting

General strategy (I)

Framework

Consider the model

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \boldsymbol{\Sigma}) \Leftrightarrow \text{vec}(\mathbf{X}) \sim \mathcal{N}_{np}(\text{vec}(\boldsymbol{\mu}), \boldsymbol{\Sigma} \otimes \mathbf{U}), \tag{dep}$$

where $\mathbf{U} \in \mathbb{R}^{n \times n}$ and $\mathbf{\Sigma} \in \mathbb{R}^{p \times p}$ are positive definite. That means :

• $X_i \sim \mathcal{N}_p(\mu_i, U_{ii}\mathbf{\Sigma})$ ($\mathbf{\Sigma} \leftrightarrow$ dependence between features),

General strategy (I)

Framework

Consider the model

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \boldsymbol{\Sigma}) \Leftrightarrow \text{vec}(\mathbf{X}) \sim \mathcal{N}_{np}(\text{vec}(\boldsymbol{\mu}), \boldsymbol{\Sigma} \otimes \mathbf{U}), \tag{dep}$$

where $\mathbf{U} \in \mathbb{R}^{n \times n}$ and $\mathbf{\Sigma} \in \mathbb{R}^{p \times p}$ are positive definite. That means :

- $X_i \sim \mathcal{N}_p(\mu_i, U_{ii}\mathbf{\Sigma})$ ($\mathbf{\Sigma} \leftrightarrow$ dependence between features),
- $X^j \sim \mathcal{N}_n(\mu^j, \Sigma_{jj} \mathbf{U})$ ($\mathbf{U} \leftrightarrow$ dependence between observations).

General strategy (I)

Framework

Consider the model

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \boldsymbol{\Sigma}) \Leftrightarrow \text{vec}(\mathbf{X}) \sim \mathcal{N}_{np}(\text{vec}(\boldsymbol{\mu}), \boldsymbol{\Sigma} \otimes \mathbf{U}), \tag{dep}$$

where $\mathbf{U} \in \mathbb{R}^{n \times n}$ and $\mathbf{\Sigma} \in \mathbb{R}^{p \times p}$ are positive definite. That means :

- $X_i \sim \mathcal{N}_p(\mu_i, U_{ii}\mathbf{\Sigma})$ ($\mathbf{\Sigma} \leftrightarrow$ dependence between features),
- $X^j \sim \mathcal{N}_n(\mu^j, \Sigma_{jj} \mathbf{U})$ ($\mathbf{U} \leftrightarrow$ dependence between observations).

In this model, $\mathbf{X}^T \nu \sim \mathcal{N}_p(\mathbf{0}_p, \mathbf{V}_{\mathcal{G}_1, \mathcal{G}_2})$ under (H0), where $\mathbf{V}_{\mathcal{G}_1, \mathcal{G}_2} = \nu^T \mathbf{U} \nu \mathbf{\Sigma}$.

General strategy (I)

Framework

Consider the model

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \boldsymbol{\Sigma}) \Leftrightarrow \text{vec}(\mathbf{X}) \sim \mathcal{N}_{np}(\text{vec}(\boldsymbol{\mu}), \boldsymbol{\Sigma} \otimes \mathbf{U}), \tag{dep}$$

where $\mathbf{U} \in \mathbb{R}^{n \times n}$ and $\mathbf{\Sigma} \in \mathbb{R}^{p \times p}$ are positive definite. That means :

- $X_i \sim \mathcal{N}_p(\mu_i, U_{ii}\mathbf{\Sigma})$ ($\mathbf{\Sigma} \leftrightarrow$ dependence between features),
- $X^j \sim \mathcal{N}_n(\mu^j, \Sigma_{jj} \mathbf{U})$ ($\mathbf{U} \leftrightarrow$ dependence between observations).

In this model, $\mathbf{X}^T \nu \sim \mathcal{N}_p(\mathbf{0}_p, \mathbf{V}_{\mathcal{G}_1, \mathcal{G}_2})$ under (H0), where $\mathbf{V}_{\mathcal{G}_1, \mathcal{G}_2} = \nu^T \mathbf{U} \nu \mathbf{\Sigma}$. Therefore, $\|\mathbf{X}^T \nu\|_{\mathbf{V}_{\mathcal{G}_1, \mathcal{G}_2}} \sim \chi_p$ under (H0), where $\|v\|_{\mathbf{V}_{\mathcal{G}_1, \mathcal{G}_2}} = \sqrt{v^T \mathbf{V}_{\mathcal{G}_1, \mathcal{G}_2}^{-1} v}$, $v \in \mathbb{R}^p$.

General strategy (I)

Framework

Consider the model

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \boldsymbol{\Sigma}) \Leftrightarrow \mathsf{vec}(\mathbf{X}) \sim \mathcal{N}_{np}(\mathsf{vec}(\boldsymbol{\mu}), \boldsymbol{\Sigma} \otimes \mathbf{U}), \tag{dep}$$

where $\mathbf{U} \in \mathbb{R}^{n \times n}$ and $\mathbf{\Sigma} \in \mathbb{R}^{p \times p}$ are positive definite. That means :

- $X_i \sim \mathcal{N}_p(\mu_i, U_{ii}\mathbf{\Sigma})$ ($\mathbf{\Sigma} \leftrightarrow$ dependence between features),
- $X^j \sim \mathcal{N}_n(\mu^j, \Sigma_{jj} \mathbf{U})$ ($\mathbf{U} \leftrightarrow$ dependence between observations).

In this model, $\mathbf{X}^T \nu \sim \mathcal{N}_{\rho}(\mathbf{0}_{\rho}, \mathbf{V}_{\mathcal{G}_1, \mathcal{G}_2})$ under (H0), where $\mathbf{V}_{\mathcal{G}_1, \mathcal{G}_2} = \nu^T \mathbf{U} \nu \mathbf{\Sigma}$. Therefore, $\|\mathbf{X}^T \nu\|_{\mathbf{V}_{\mathcal{G}_1, \mathcal{G}_2}} \sim \chi_{\rho}$ under (H0), where $\|v\|_{\mathbf{V}_{\mathcal{G}_1, \mathcal{G}_2}} = \sqrt{v^T \mathbf{V}_{\mathcal{G}_1, \mathcal{G}_2}^{-1} v}$, $v \in \mathbb{R}^p$.

Candidate p-value for (H0) under (dep)

$$\begin{split} \rho_{\mathbf{V}_{\mathcal{G}_{1},\mathcal{G}_{2}}}(\mathbf{x};\{\mathcal{G}_{1},\mathcal{G}_{2}\}) &= & \mathbb{P}_{H_{0}^{\{\mathcal{G}_{1},\mathcal{G}_{2}\}}}\left(\|\mathbf{X}^{T}\nu\|_{\mathbf{V}_{\mathcal{G}_{1},\mathcal{G}_{2}}} \geq \|\mathbf{x}^{T}\nu\|_{\mathbf{V}_{\mathcal{G}_{1},\mathcal{G}_{2}}} \;\middle|\; \mathcal{G}_{1},\mathcal{G}_{2} \in \mathcal{C}(\mathbf{X}), \\ & \boldsymbol{\pi}_{\nu}^{\perp}\mathbf{X} = \boldsymbol{\pi}_{\nu}^{\perp}\mathbf{x} \,,\, \mathrm{dir}_{\mathbf{V}_{\mathcal{G}_{1},\mathcal{G}_{2}}}(\mathbf{X}^{T}\nu) = \mathrm{dir}_{\mathbf{V}_{\mathcal{G}_{1},\mathcal{G}_{2}}}(\mathbf{x}^{T}\nu)\right) \end{split}$$

General strategy (II)

Candidate p-value for (H0) under (dep)

$$\begin{split} \rho_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}}(\mathbf{x};\{\mathcal{G}_1,\mathcal{G}_2\}) &= \mathbb{P}_{H_0^{\{\mathcal{G}_1,\mathcal{G}_2\}}} \Big(\|\mathbf{X}^T \boldsymbol{\nu}\|_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} \geq \|\mathbf{x}^T \boldsymbol{\nu}\|_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} \Big) \\ \|\mathbf{X}^T \boldsymbol{\nu}\|_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} &\in \mathcal{S}_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}}(\mathbf{x};\{\mathcal{G}_1,\mathcal{G}_2\}), \ \boldsymbol{\pi}_{\boldsymbol{\nu}}^{\perp} \mathbf{X} = \boldsymbol{\pi}_{\boldsymbol{\nu}}^{\perp} \mathbf{x}, \ \mathrm{dir}_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}}(\mathbf{X}^T \boldsymbol{\nu}) = \mathrm{dir}_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}}(\mathbf{x}^T \boldsymbol{\nu}) \Big). \end{split}$$

General strategy (II)

Candidate p-value for (H0) under (dep)

$$\begin{split} \rho_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}}(\mathbf{x};\{\mathcal{G}_1,\mathcal{G}_2\}) &= \mathbb{P}_{H_0^{\{\mathcal{G}_1,\mathcal{G}_2\}}} \Big(\|\mathbf{X}^T \boldsymbol{\nu}\|_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} \geq \|\mathbf{x}^T \boldsymbol{\nu}\|_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} \Big| \\ \|\mathbf{X}^T \boldsymbol{\nu}\|_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} &\in \mathcal{S}_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}}(\mathbf{x};\{\mathcal{G}_1,\mathcal{G}_2\}), \ \boldsymbol{\pi}_{\boldsymbol{\nu}}^{\perp} \mathbf{X} = \boldsymbol{\pi}_{\boldsymbol{\nu}}^{\perp} \mathbf{x}, \ \mathrm{dir}_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} \big(\mathbf{X}^T \boldsymbol{\nu}\big) = \mathrm{dir}_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} \big(\mathbf{x}^T \boldsymbol{\nu}\big) \Big). \end{split}$$

For any $p \times p$ symmetric positive definite matrix \mathbf{A} , let $\|v\|_{\mathbf{A}}^2 = v^T \mathbf{A}^{-1} v$ and $\dim_{\mathbf{A}}(v) = v/\|v\|_{\mathbf{A}} \mathbb{1}\{v \neq 0\}$ for all $v \in \mathbb{R}^p$.

General strategy (II)

Candidate p-value for (H0) under (dep)

$$\begin{split} \rho_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}}(\mathbf{x};\{\mathcal{G}_1,\mathcal{G}_2\}) &= \mathbb{P}_{\boldsymbol{H}_0^{\{\mathcal{G}_1,\mathcal{G}_2\}}} \left(\|\mathbf{X}^{T}\boldsymbol{\nu}\|_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} \geq \|\mathbf{x}^{T}\boldsymbol{\nu}\|_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} \right. \\ &\|\mathbf{X}^{T}\boldsymbol{\nu}\|_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} \in \mathcal{S}_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}}(\mathbf{x};\{\mathcal{G}_1,\mathcal{G}_2\}), \ \boldsymbol{\pi}_{\boldsymbol{\nu}}^{\perp}\mathbf{X} = \boldsymbol{\pi}_{\boldsymbol{\nu}}^{\perp}\mathbf{x}, \ \mathsf{dir}_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}}(\mathbf{X}^{T}\boldsymbol{\nu}) = \mathsf{dir}_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}}(\mathbf{x}^{T}\boldsymbol{\nu}) \right). \end{split}$$

For any $p \times p$ symmetric positive definite matrix \mathbf{A} , let $\|v\|_{\mathbf{A}}^2 = v^T \mathbf{A}^{-1} v$ and $\operatorname{dir}_{\mathbf{A}}(v) = v/\|v\|_{\mathbf{A}} \mathbb{1}\{v \neq 0\}$ for all $v \in \mathbb{R}^p$.

Proposition

(i)
$$\mathbf{A} = c\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}$$
 for some $c > 0 \stackrel{(\mathsf{H0})}{\Leftrightarrow} ||\mathbf{X}^T \nu_{\mathcal{G}_1,\mathcal{G}_2}||_{\mathbf{A}} \perp \operatorname{dir}_{\mathbf{A}} (\mathbf{X}^T \nu_{\mathcal{G}_1,\mathcal{G}_2}),$

General strategy (II)

Candidate p-value for (H0) under (dep)

$$\begin{split} \rho_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}}(\mathbf{x};\{\mathcal{G}_1,\mathcal{G}_2\}) &= \mathbb{P}_{H_0^{\{\mathcal{G}_1,\mathcal{G}_2\}}} \Big(\|\mathbf{X}^T \boldsymbol{\nu}\|_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} \geq \|\mathbf{x}^T \boldsymbol{\nu}\|_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} \Big| \\ \|\mathbf{X}^T \boldsymbol{\nu}\|_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} &\in \mathcal{S}_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}}(\mathbf{x};\{\mathcal{G}_1,\mathcal{G}_2\}), \ \boldsymbol{\pi}_{\boldsymbol{\nu}}^{\perp} \mathbf{X} = \boldsymbol{\pi}_{\boldsymbol{\nu}}^{\perp} \mathbf{x}, \ \mathsf{dir}_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} \big(\mathbf{X}^T \boldsymbol{\nu}\big) = \mathsf{dir}_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} \big(\mathbf{x}^T \boldsymbol{\nu}\big) \Big). \end{split}$$

For any $p \times p$ symmetric positive definite matrix \mathbf{A} , let $\|v\|_{\mathbf{A}}^2 = v^T \mathbf{A}^{-1} v$ and $\operatorname{dir}_{\mathbf{A}}(v) = v/\|v\|_{\mathbf{A}} \mathbb{1}\{v \neq 0\}$ for all $v \in \mathbb{R}^p$.

Proposition

- $(i) \ \mathbf{A} = c \mathbf{V}_{\mathcal{G}_1, \mathcal{G}_2} \text{ for some } c > 0 \overset{(H0)}{\Leftrightarrow} || \mathbf{X}^T \nu_{\mathcal{G}_1, \mathcal{G}_2} ||_{\mathbf{A}} \perp \operatorname{dir}_{\mathbf{A}} \left(\mathbf{X}^T \nu_{\mathcal{G}_1, \mathcal{G}_2} \right),$
- $\text{\it (ii)} \ \ \textbf{X}^{\mathsf{T}}\nu_{\mathcal{G}_1,\mathcal{G}_2} \perp \!\!\! \perp \boldsymbol{\pi}_{\nu_{\mathcal{G}_1},\mathcal{G}_2}^{\perp} \textbf{X} \ \text{for all} \ (\mathcal{G}_1,\mathcal{G}_2) \Leftrightarrow \textbf{U} \in \mathcal{CS}(\textbf{n}),$

General strategy (II)

Candidate p-value for (H0) under (dep)

$$\begin{split} \rho_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}}(\mathbf{x};\{\mathcal{G}_1,\mathcal{G}_2\}) &= \mathbb{P}_{H_0^{\{\mathcal{G}_1,\mathcal{G}_2\}}} \left(\|\mathbf{X}^T \boldsymbol{\nu}\|_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} \geq \|\mathbf{x}^T \boldsymbol{\nu}\|_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} \right. \\ \|\mathbf{X}^T \boldsymbol{\nu}\|_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} &\in \mathcal{S}_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}}(\mathbf{x};\{\mathcal{G}_1,\mathcal{G}_2\}), \ \boldsymbol{\pi}_{\boldsymbol{\nu}}^{\perp} \mathbf{X} = \boldsymbol{\pi}_{\boldsymbol{\nu}}^{\perp} \mathbf{x}, \ \mathsf{dir}_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} \big(\mathbf{X}^T \boldsymbol{\nu}\big) = \mathsf{dir}_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} \big(\mathbf{x}^T \boldsymbol{\nu}\big) \Big). \end{split}$$

For any $p \times p$ symmetric positive definite matrix \mathbf{A} , let $\|v\|_{\mathbf{A}}^2 = v^T \mathbf{A}^{-1} v$ and $\operatorname{dir}_{\mathbf{A}}(v) = v/\|v\|_{\mathbf{A}} \mathbb{1}\{v \neq 0\}$ for all $v \in \mathbb{R}^p$.

Proposition

- $(i) \ \mathbf{A} = c \mathbf{V}_{\mathcal{G}_1, \mathcal{G}_2} \text{ for some } c > 0 \overset{(H0)}{\Leftrightarrow} || \mathbf{X}^T \nu_{\mathcal{G}_1, \mathcal{G}_2} ||_{\mathbf{A}} \perp \operatorname{dir}_{\mathbf{A}} \left(\mathbf{X}^T \nu_{\mathcal{G}_1, \mathcal{G}_2} \right),$
- $\text{\it (ii)} \ \ \textbf{X}^{T}\nu_{\mathcal{G}_{1},\mathcal{G}_{2}} \perp \!\!\! \perp \boldsymbol{\pi}_{\nu_{\mathcal{G}_{1},\mathcal{G}_{2}}}^{\perp} \textbf{X} \ \text{for all} \ (\mathcal{G}_{1},\mathcal{G}_{2}) \Leftrightarrow \textbf{U} \in \mathcal{CS}(\textbf{n}),$

where $\mathcal{CS}(n)$ is the class of compound symmetry positive definite matrices :

$$CS(n) = \{(a-b)\mathbf{I}_n + b\mathbf{1}_{n \times n} : a \ge 0, -\frac{a}{n-1} < b < a\}.$$

Post-clustering inference for $\mathbf{U} \in \mathcal{CS}(n)$

The direct extension of the strategy of Gao *et al.* to the general model (dep) imposes a compound symmetry constraint on the dependence between observations.

Post-clustering inference for $\mathbf{U} \in \mathcal{CS}(n)$

The direct extension of the strategy of Gao *et al.* to the general model (dep) imposes a compound symmetry constraint on the dependence between observations.

Theorem

Let $\mathcal C$ be a clustering algorithm and $\mathbf x$ a realization of $\mathbf X \sim \mathcal{MN}_{n \times p}(\mu, \mathbf U, \mathbf \Sigma)$ with $\mathbf U \in \mathcal{CS}(n)$. Then,

$$p_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}}(\mathbf{x};\{\mathcal{G}_1,\mathcal{G}_2\}) = 1 - \mathbb{F}_p\big(\|\mathbf{x}^{\top}\boldsymbol{\nu}\|_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}},\,\mathcal{S}_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}}(\mathbf{x},\{\mathcal{G}_1,\mathcal{G}_2\})\big) \qquad \text{(p-tract)}$$

where $\mathbb{F}_{\rho}(t,\mathcal{S})$ is the cumulative distribution function of a χ_{ρ} random variable truncated to the set \mathcal{S} .

Post-clustering inference for $\mathbf{U} \in \mathcal{CS}(n)$

The direct extension of the strategy of Gao *et al.* to the general model (dep) imposes a compound symmetry constraint on the dependence between observations.

Theorem

Let $\mathcal C$ be a clustering algorithm and x a realization of $\mathbf X \sim \mathcal{MN}_{n \times p}(\mu, \mathbf U, \mathbf \Sigma)$ with $\mathbf U \in \mathcal{CS}(n)$. Then,

$$p_{\mathsf{V}_{\mathcal{G}_1,\mathcal{G}_2}}(\mathsf{x};\{\mathcal{G}_1,\mathcal{G}_2\}) = 1 - \mathbb{F}_{\textit{P}}\big(\|\mathsf{x}^{\textit{T}}\nu\|_{\mathsf{V}_{\mathcal{G}_1,\mathcal{G}_2}}, \ \boxed{\mathcal{S}_{\mathsf{V}_{\mathcal{G}_1,\mathcal{G}_2}}(\mathsf{x},\{\mathcal{G}_1,\mathcal{G}_2\})} \\ \text{Scale trans. of } \mathcal{S}_2$$

where $\mathbb{F}_{\rho}(t, \mathcal{S})$ is the cumulative distribution function of a χ_{ρ} random variable truncated to the set \mathcal{S} .

Post-clustering inference for $\mathbf{U} \in \mathcal{CS}(n)$

The direct extension of the strategy of Gao *et al.* to the general model (dep) imposes a compound symmetry constraint on the dependence between observations.

Theorem

Let $\mathcal C$ be a clustering algorithm and $\mathbf x$ a realization of $\mathbf X \sim \mathcal{MN}_{n \times p}(\mu, \mathbf U, \mathbf \Sigma)$ with $\mathbf U \in \mathcal{CS}(n)$. Then,

$$p_{\mathsf{V}_{\mathcal{G}_1,\mathcal{G}_2}}(\mathsf{x};\{\mathcal{G}_1,\mathcal{G}_2\}) = 1 - \mathbb{F}_{\textit{P}}\big(\|\mathsf{x}^{\textit{T}}\nu\|_{\mathsf{V}_{\mathcal{G}_1,\mathcal{G}_2}}, \ \boxed{\mathcal{S}_{\mathsf{V}_{\mathcal{G}_1,\mathcal{G}_2}}(\mathsf{x},\{\mathcal{G}_1,\mathcal{G}_2\})} \\ \text{Scale trans. of } \mathcal{S}_2$$

where $\mathbb{F}_{\rho}(t, \mathcal{S})$ is the cumulative distribution function of a χ_{ρ} random variable truncated to the set \mathcal{S} .

• The control of the sel. type I error is robust to moderate deviations of $\mathbf{U} \in \mathcal{CS}(n)$.

• The projection $\boldsymbol{\pi}_{\nu}^{\perp}\mathbf{X}$ is not independent of $\mathbf{X}^{T}\nu$ in general.

- The projection $\boldsymbol{\pi}_{\nu}^{\perp}\mathbf{X}$ is not independent of $\mathbf{X}^{T}\nu$ in general.
- Therefore, the distribution of interest is not that of $\mathbf{X}^T \nu$, but rather that of the conditioned vector :

$$\bar{\mathbf{X}}_{\nu}(\mathbf{x}) := \mathbf{X}^{T} \nu \, \big| \, \{ \boldsymbol{\pi}_{\nu}^{\perp} \mathbf{X} = \boldsymbol{\pi}_{\nu}^{\perp} \mathbf{x}, \, \mathrm{dir}(\mathbf{X}^{T} \nu) = \pm \mathrm{dir}(\mathbf{x}^{T} \nu) \}, \quad \text{for } \mathbf{x} \in \mathbb{R}^{n \times p},$$

- The projection $\boldsymbol{\pi}_{\nu}^{\perp} \mathbf{X}$ is not independent of $\mathbf{X}^{T} \nu$ in general.
- Therefore, the distribution of interest is not that of X^Tν, but rather that of the conditioned vector:

$$\bar{\mathbf{X}}_{\nu}(\mathbf{x}) := \mathbf{X}^{T} \nu \, \big| \, \{ \boldsymbol{\pi}_{\nu}^{\perp} \mathbf{X} = \boldsymbol{\pi}_{\nu}^{\perp} \mathbf{x}, \, \mathrm{dir}(\mathbf{X}^{T} \nu) = \pm \mathrm{dir}(\mathbf{x}^{T} \nu) \}, \quad \text{for } \mathbf{x} \in \mathbb{R}^{n \times p},$$

Theorem

Let $\mathcal C$ be a clustering algorithm and x a realization of $X \sim \mathcal{MN}_{n \times p}(\mu, U, \Sigma)$. Then,

$$ar{\mathbf{X}}_{
u}(\mathbf{x}) \sim \mathcal{N}_{p}\left(\mathbf{0}, \mathbf{\Gamma}_{\mathbf{x}}\right),$$

under (H0),

- The projection $\boldsymbol{\pi}_{\nu}^{\perp}\mathbf{X}$ is not independent of $\mathbf{X}^{T}\nu$ in general.
- Therefore, the distribution of interest is not that of X^Tν, but rather that of the conditioned vector:

$$\bar{\mathbf{X}}_{\nu}(\mathbf{x}) := \mathbf{X}^{T} \nu \, \big| \, \{ \boldsymbol{\pi}_{\nu}^{\perp} \mathbf{X} = \boldsymbol{\pi}_{\nu}^{\perp} \mathbf{x}, \, \mathrm{dir}(\mathbf{X}^{T} \nu) = \pm \mathrm{dir}(\mathbf{x}^{T} \nu) \}, \quad \text{for } \mathbf{x} \in \mathbb{R}^{n \times p},$$

Theorem

Let $\mathcal C$ be a clustering algorithm and x a realization of $X \sim \mathcal{MN}_{n \times p}(\mu, U, \Sigma)$. Then,

$$\boldsymbol{\bar{X}}_{\nu}(\boldsymbol{x}) \sim \mathcal{N}_{\rho}\left(\boldsymbol{0}, \boldsymbol{\Gamma}_{\boldsymbol{x}}\right),$$

under (H0), where

$$\begin{split} \boldsymbol{\Gamma}_{\boldsymbol{x}} &= (\boldsymbol{I}_{\rho} \otimes \boldsymbol{\nu}^{T}) (\boldsymbol{\Sigma} \otimes \boldsymbol{U} - (\boldsymbol{\Sigma} \otimes \boldsymbol{U}) \boldsymbol{A}_{\boldsymbol{x}}^{\top} (\boldsymbol{A}_{\boldsymbol{x}} (\boldsymbol{\Sigma} \otimes \boldsymbol{U}) \boldsymbol{A}_{\boldsymbol{x}}^{\top})^{\dagger} \boldsymbol{A}_{\boldsymbol{x}} (\boldsymbol{\Sigma} \otimes \boldsymbol{U})) (\boldsymbol{I}_{\rho} \otimes \boldsymbol{\nu}), \\ \boldsymbol{A}_{\boldsymbol{x}} &= \begin{bmatrix} \boldsymbol{\pi}_{\boldsymbol{x}_{\nu}}^{\perp} (\boldsymbol{I}_{\rho} \otimes \boldsymbol{\pi}_{\nu}) \\ \boldsymbol{I}_{\rho} \otimes \boldsymbol{\pi}_{\nu}^{\perp} \end{bmatrix}, \\ \boldsymbol{\pi}_{\nu} &= \boldsymbol{I}_{\rho} - \boldsymbol{\pi}_{\nu}^{\perp}, \ \boldsymbol{x}_{\nu} = \operatorname{vec}(\boldsymbol{\pi}_{\nu} \boldsymbol{x}) \quad \text{and} \quad \boldsymbol{\pi}_{\nu}^{\perp} &= \boldsymbol{I}_{\rho\rho} - \boldsymbol{x}_{\nu}^{T} \boldsymbol{x}_{\nu} / \|\boldsymbol{x}_{\nu}\|_{2}^{2}. \end{split}$$

Candidate p-value for (H0) under arbitrary U

$$\begin{split} \rho_{\Gamma}(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}) &= \mathbb{P}_{H_0^{\{\mathcal{G}_1, \mathcal{G}_2\}}} \Big(\|\mathbf{X}^T \boldsymbol{\nu}\|_{\Gamma_{\mathbf{x}}} \geq \|\mathbf{x}^T \boldsymbol{\nu}\|_{\Gamma_{\mathbf{x}}} \; \Big| \; \mathcal{G}_1, \mathcal{G}_2 \in \mathcal{C}(\mathbf{X}), \\ \boldsymbol{\pi}_{\boldsymbol{\nu}}^{\perp} \mathbf{X} &= \boldsymbol{\pi}_{\boldsymbol{\nu}}^{\perp} \mathbf{x} \,, \, \mathrm{dir} \big(\mathbf{X}^T \boldsymbol{\nu}\big) = \pm \mathrm{dir} \big(\mathbf{x}^T \boldsymbol{\nu}\big) \Big), \end{split}$$

where $\|v\|_{\Gamma_{\mathbf{x}}}^2 = v^T \Gamma_{\mathbf{x}}^{\dagger} v, \quad \forall \, v \in \mathbb{R}^p.$

Candidate p-value for (H0) under arbitrary U

$$\begin{split} \rho_{\Gamma}(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}) &= \mathbb{P}_{H_0^{\{\mathcal{G}_1, \mathcal{G}_2\}}} \Big(\|\mathbf{X}^{\mathsf{T}} \boldsymbol{\nu}\|_{\Gamma_{\mathbf{x}}} \geq \|\mathbf{x}^{\mathsf{T}} \boldsymbol{\nu}\|_{\Gamma_{\mathbf{x}}} \ \Big| \ \mathcal{G}_1, \mathcal{G}_2 \in \mathcal{C}(\mathbf{X}), \\ \pi_{\boldsymbol{\nu}}^{\perp} \mathbf{X} &= \pi_{\boldsymbol{\nu}}^{\perp} \mathbf{x}, \ \mathrm{dir}\big(\mathbf{X}^{\mathsf{T}} \boldsymbol{\nu}\big) = \pm \mathrm{dir}\big(\mathbf{x}^{\mathsf{T}} \boldsymbol{\nu}\big) \Big), \end{split}$$

where $\|v\|_{\Gamma_{\mathbf{x}}}^2 = v^T \Gamma_{\mathbf{x}}^{\dagger} v, \quad \forall \, v \in \mathbb{R}^p.$

Proposition

The quantity $\|\bar{\mathbf{X}}_{\nu}(\mathbf{x})\|_{\Gamma_{\mathbf{x}}}$ follows x-a.s. a χ_1 distribution under (H0). Moreover,

$$p_{\Gamma}(\mathbf{x};\{\mathcal{G}_1,\mathcal{G}_2\}) = 1 - \mathbb{F}_1\left(\|\mathbf{x}^{T}\nu\|_{\Gamma_\mathbf{x}},\,\mathcal{S}_{\Gamma_\mathbf{x}}(\mathbf{x};\{\mathcal{G}_1,\mathcal{G}_2\})\right),$$

where $\mathbb{F}_1(t,\mathcal{S})$ is the cumulative distribution function of a χ_1 random variable truncated to the set \mathcal{S} and $\mathcal{S}_{\Gamma_{\mathbf{x}}}(\mathbf{x};\{\mathcal{G}_1,\mathcal{G}_2\})$ is a scale transformation of \mathcal{S}_2 .

Candidate p-value for (H0) under arbitrary U

$$\begin{split} \rho_{\Gamma}(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}) &= \mathbb{P}_{H_0^{\{\mathcal{G}_1, \mathcal{G}_2\}}} \Big(\|\mathbf{X}^{\mathsf{T}} \boldsymbol{\nu}\|_{\Gamma_{\mathbf{x}}} \geq \|\mathbf{x}^{\mathsf{T}} \boldsymbol{\nu}\|_{\Gamma_{\mathbf{x}}} \; \Big| \; \mathcal{G}_1, \mathcal{G}_2 \in \mathcal{C}(\mathbf{X}), \\ \boldsymbol{\pi}_{\boldsymbol{\nu}}^{\perp} \mathbf{X} &= \boldsymbol{\pi}_{\boldsymbol{\nu}}^{\perp} \mathbf{x}, \, \mathrm{dir} \big(\mathbf{X}^{\mathsf{T}} \boldsymbol{\nu}\big) = \pm \mathrm{dir} \big(\mathbf{x}^{\mathsf{T}} \boldsymbol{\nu}\big) \Big), \end{split}$$

where $\|v\|_{\Gamma_{\mathbf{x}}}^2 = v^T \Gamma_{\mathbf{x}}^{\dagger} v, \quad \forall \, v \in \mathbb{R}^p.$

Proposition

The quantity $\|\bar{\mathbf{X}}_{\nu}(\mathbf{x})\|_{\Gamma_{\mathbf{x}}}$ follows x-a.s. a χ_1 distribution under (H0). Moreover,

$$\rho_{\Gamma}(\mathbf{x};\{\mathcal{G}_1,\mathcal{G}_2\}) = 1 - \mathbb{F}_1\left(\|\mathbf{x}^{\mathsf{T}}\boldsymbol{\nu}\|_{\Gamma_\mathbf{x}},\,\mathcal{S}_{\Gamma_\mathbf{x}}(\mathbf{x};\{\mathcal{G}_1,\mathcal{G}_2\})\right),$$

where $\mathbb{F}_1(t,\mathcal{S})$ is the cumulative distribution function of a χ_1 random variable truncated to the set \mathcal{S} and $\mathcal{S}_{\Gamma_{\mathbf{v}}}(\mathbf{x};\{\mathcal{G}_1,\mathcal{G}_2\})$ is a scale transformation of \mathcal{S}_2 .

• Assessing whether $p_{\Gamma}(\mathbf{X}; \{\mathcal{G}_1, \mathcal{G}_2\})$ controls the selective type I error is a challenging problem, as it requires understanding the behavior of the null distribution of $\|\bar{\mathbf{X}}_{\nu}(\mathbf{x})\|_{\Gamma_{\mathbf{X}}}^2 = \bar{\mathbf{X}}_{\nu}(\mathbf{x})^T \Gamma_{\mathbf{X}}^{\dagger} \bar{\mathbf{X}}_{\nu}(\mathbf{x})$.

Numerical simulations suggest the unsuitability of $p_{\Gamma}(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\})$

Numerical simulations suggest the unsuitability of $p_{\Gamma}(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\})$

Conclusion

Defining a tractable *p*-value that ensures the selective type I error control requires the conditioning on events that are *independent* of the test statistic.

Independence setting (Gao et al. 2022)

Independence setting (Gao et al. 2022)

Let
$$\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{I}_n, \sigma^2 \mathbf{I}_p)$$
 and consider

$$\hat{\rho}(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}) = 1 - \mathbb{F}_{\rho}\Big(\|\mathbf{x}^{\mathsf{T}}\nu\|_2; \hat{\sigma}\|\nu\|_2, \mathcal{S}_2(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\})\Big).$$

Independence setting (Gao et al. 2022)

Let $\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{I}_n, \sigma^2 \mathbf{I}_p)$ and consider

$$\hat{\rho}(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}) = 1 - \mathbb{F}_{\rho}(\|\mathbf{x}^T \nu\|_2; \hat{\sigma}\|\nu\|_2, \mathcal{S}_2(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\})).$$

Theorem 4 in Gao et al. 2022

If $\hat{\sigma}$ is an estimator of σ such that

$$\lim_{n \to \infty} \mathbb{P}_{H_0^{\{\mathcal{G}_1^{(n)},\mathcal{G}_2^{(n)}\}}} \left(\hat{\sigma} \left(\mathbf{X}^{(n)} \right) \geq \sigma \, \middle| \, \mathcal{G}_1^{(n)}, \mathcal{G}_2^{(n)} \in \mathcal{C} \big(\mathbf{X}^{(n)} \big) \right) = 1, \tag{σ over-est)}$$

Independence setting (Gao et al. 2022)

Let $\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{I}_n, \sigma^2 \mathbf{I}_p)$ and consider

$$\hat{\rho}(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}) = 1 - \mathbb{F}_{\rho}\Big(\|\mathbf{x}^{\mathsf{T}}\nu\|_2; \hat{\sigma}\|\nu\|_2, \mathcal{S}_2(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\})\Big).$$

Theorem 4 in Gao et al. 2022

If $\hat{\sigma}$ is an estimator of σ such that

$$\lim_{n\to\infty} \mathbb{P}_{H_0^{\{\mathcal{G}_1^{(n)},\mathcal{G}_2^{(n)}\}}} \left(\hat{\sigma} \left(\mathbf{X}^{(n)} \right) \geq \sigma \, \middle| \, \mathcal{G}_1^{(n)},\mathcal{G}_2^{(n)} \in \mathcal{C} \big(\mathbf{X}^{(n)} \big) \right) = 1, \tag{σ over-est)}$$

then, for any $\alpha \in [0,1]$, it holds

$$\limsup_{n \to \infty} \mathbb{P}_{H_0^{\{\mathcal{G}_1^{(n)},\mathcal{G}_2^{(n)}\}}} \Big(\hat{p} \big(\mathbf{X}^{(n)}; \big\{ \mathcal{G}_1^{(n)},\mathcal{G}_2^{(n)} \big\} \big) \leq \alpha \, \Big| \, \mathcal{G}_1^{(n)},\mathcal{G}_2^{(n)} \in \mathcal{C} \big(\mathbf{X}^{(n)} \big) \Big) \leq \alpha.$$

Independence setting (Gao et al. 2022)

Let $\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{I}_n, \sigma^2 \mathbf{I}_p)$ and consider

$$\hat{\rho}(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\}) = 1 - \mathbb{F}_{\rho}(\|\mathbf{x}^{\mathsf{T}}\nu\|_2; \hat{\sigma}\|\nu\|_2, \mathcal{S}_2(\mathbf{x}; \{\mathcal{G}_1, \mathcal{G}_2\})).$$

Theorem 4 in Gao et al. 2022

If $\hat{\sigma}$ is an estimator of σ such that

$$\lim_{n \to \infty} \mathbb{P}_{H_0^{\{\mathcal{G}_1^{(n)},\mathcal{G}_2^{(n)}\}}} \left(\hat{\sigma}\left(\mathbf{X}^{(n)}\right) \geq \sigma \, \middle| \, \mathcal{G}_1^{(n)},\mathcal{G}_2^{(n)} \in \mathcal{C}\big(\mathbf{X}^{(n)}\big) \right) = 1, \tag{σ over-est)}$$

then, for any $\alpha \in [0,1]$, it holds

$$\limsup_{n \to \infty} \mathbb{P}_{H_0^{\{\mathcal{G}_1^{(n)},\mathcal{G}_2^{(n)}\}}} \Big(\hat{p} \big(\mathbf{X}^{(n)}; \big\{ \mathcal{G}_1^{(n)},\mathcal{G}_2^{(n)} \big\} \big) \leq \alpha \, \Big| \, \mathcal{G}_1^{(n)},\mathcal{G}_2^{(n)} \in \mathcal{C} \big(\mathbf{X}^{(n)} \big) \Big) \leq \alpha.$$

o Gao *et al.* propose an estimator $\hat{\sigma}$ that satisfies (σ over-est) under mild assumptions on $\{\mu^{(n)}\}_{n\in\mathbb{N}}$.

Arbitrary dependence setting

Let

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \boldsymbol{\Sigma}).$$
 (dep)

Can we estimate both U and Σ ?

Arbitrary dependence setting

Let

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \boldsymbol{\Sigma}).$$
 (dep)

Can we estimate both U and Σ ?

• Under the general model (dep), the scale matrices ${\bf U}$ and ${\bf \Sigma}$ are non-identifiable.

Arbitrary dependence setting

Let

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \boldsymbol{\Sigma}).$$
 (dep)

Can we estimate both \mathbf{U} and $\mathbf{\Sigma}$?

- Under the general model (dep), the scale matrices U and Σ are non-identifiable.
- Multiple copies of **X** are needed to simultaneously estimate **U** and **Σ**.

Arbitrary dependence setting

Let

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \mathbf{\Sigma}).$$
 (dep)

Can we estimate both \mathbf{U} and $\mathbf{\Sigma}$?

- Under the general model (dep), the scale matrices U and Σ are non-identifiable.
- Multiple copies of X are needed to simultaneously estimate U and Σ.
- We assume that either U or Σ is known :

$$\boldsymbol{X} \sim \mathcal{M} \mathcal{N}_{n \times p}(\boldsymbol{\mu}, \boldsymbol{U}, \boldsymbol{\Sigma}) \Leftrightarrow \boldsymbol{X}^T \sim \mathcal{M} \mathcal{N}_{p \times n}(\boldsymbol{\mu}^T, \boldsymbol{\Sigma}, \boldsymbol{U}).$$

Arbitrary dependence setting

Let

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \boldsymbol{\Sigma}).$$
 (dep)

Can we estimate both \mathbf{U} and $\mathbf{\Sigma}$?

- Under the general model (dep), the scale matrices U and Σ are non-identifiable.
- Multiple copies of X are needed to simultaneously estimate U and Σ.
- We assume that either U or Σ is known :

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \boldsymbol{\Sigma}) \Leftrightarrow \mathbf{X}^T \sim \mathcal{MN}_{p \times n}(\boldsymbol{\mu}^T, \boldsymbol{\Sigma}, \mathbf{U}).$$

→ How to extend the notion of over-estimation to matrices?

Arbitrary dependence setting

Let

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \mathbf{\Sigma}).$$
 (dep)

Can we estimate both U and Σ ?

- Under the general model (dep), the scale matrices U and Σ are non-identifiable.
- Multiple copies of X are needed to simultaneously estimate U and Σ.
- We assume that either U or Σ is known:

$$\boldsymbol{X} \sim \mathcal{M}\mathcal{N}_{n \times p}(\boldsymbol{\mu}, \boldsymbol{U}, \boldsymbol{\Sigma}) \Leftrightarrow \boldsymbol{X}^{T} \sim \mathcal{M}\mathcal{N}_{p \times n}(\boldsymbol{\mu}^{T}, \boldsymbol{\Sigma}, \boldsymbol{U}).$$

→ How to extend the notion of over-estimation to matrices?

Loewner partial order ≻

Let A, B be two Hermitian matrices. $A \succeq B$ if and only if A - B is positive semidefinite (PSD).

Remark : If $A = \hat{\sigma} I_p$ and $B = \sigma I_p$, the condition $A \succeq B$ becomes $\hat{\sigma} \geq \sigma$.

Over-estimation of Σ for known U

Let $\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{U}^{(n)}, \boldsymbol{\Sigma})$ with $\mathbf{U}^{(n)} \in \mathcal{CS}(n)$ and consider

$$\rho_{\hat{\boldsymbol{V}}_{\mathcal{G}_1,\mathcal{G}_2}}(\boldsymbol{x};\{\mathcal{G}_1,\mathcal{G}_2\}) = 1 - \mathbb{F}_{\boldsymbol{P}}\bigg(\|\boldsymbol{x}^{\mathcal{T}}\boldsymbol{\nu}\|_{\hat{\boldsymbol{V}}_{\mathcal{G}_1,\mathcal{G}_2}};\mathcal{S}_{\hat{\boldsymbol{V}}_{\mathcal{G}_1,\mathcal{G}_2}}(\boldsymbol{x},\{\mathcal{G}_1,\mathcal{G}_2\})\bigg)$$

where $\hat{\mathbf{V}}_{\mathcal{G}_1,\mathcal{G}_2} = \nu^T \mathbf{U} \nu \hat{\mathbf{\Sigma}}(\mathbf{x})$.

Over-estimation of Σ for known U

Let $\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{U}^{(n)}, \boldsymbol{\Sigma})$ with $\mathbf{U}^{(n)} \in \mathcal{CS}(n)$ and consider

$$\rho_{\hat{\boldsymbol{V}}_{\mathcal{G}_1,\mathcal{G}_2}}(\boldsymbol{x};\{\mathcal{G}_1,\mathcal{G}_2\}) = 1 - \mathbb{F}_{\boldsymbol{\rho}}\bigg(\|\boldsymbol{x}^{\mathsf{T}}\boldsymbol{\nu}\|_{\hat{\boldsymbol{V}}_{\mathcal{G}_1,\mathcal{G}_2}};\mathcal{S}_{\hat{\boldsymbol{V}}_{\mathcal{G}_1,\mathcal{G}_2}}(\boldsymbol{x},\{\mathcal{G}_1,\mathcal{G}_2\})\bigg)$$

where $\hat{\mathbf{V}}_{\mathcal{G}_1,\mathcal{G}_2} = \nu^T \mathbf{U} \nu \hat{\mathbf{\Sigma}}(\mathbf{x})$.

Theorem (extension of Theorem 4 in Gao et al. 2022)

Let $\mathbf{U} \in \mathcal{CS}(n)$ and $\hat{\mathbf{\Sigma}}(\mathbf{X}^{(n)})$ be a positive definite estimator of $\mathbf{\Sigma}$ such that

$$\lim_{n\to\infty} \mathbb{P}_{H_0^{\{\mathcal{G}_1^{(n)},\mathcal{G}_2^{(n)}\}}} \left(\hat{\boldsymbol{\Sigma}} \big(\boldsymbol{X}^{(n)} \big) \succeq \boldsymbol{\Sigma} \, \middle| \, \mathcal{G}_1^{(n)},\mathcal{G}_2^{(n)} \in \mathcal{C} \big(\boldsymbol{X}^{(n)} \big) \right) = 1, \tag{$\boldsymbol{\Sigma}$ over-est)}$$

Over-estimation of Σ for known U

Let $\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{U}^{(n)}, \boldsymbol{\Sigma})$ with $\mathbf{U}^{(n)} \in \mathcal{CS}(n)$ and consider

$$\rho_{\hat{\boldsymbol{V}}_{\mathcal{G}_1,\,\mathcal{G}_2}}(\boldsymbol{x};\{\mathcal{G}_1,\mathcal{G}_2\}) = 1 - \mathbb{F}_{\boldsymbol{P}}\bigg(\|\boldsymbol{x}^{\mathsf{T}}\boldsymbol{\nu}\|_{\hat{\boldsymbol{V}}_{\mathcal{G}_1,\,\mathcal{G}_2}};\mathcal{S}_{\hat{\boldsymbol{V}}_{\mathcal{G}_1,\,\mathcal{G}_2}}(\boldsymbol{x},\{\mathcal{G}_1,\mathcal{G}_2\})\bigg)$$

where $\hat{\mathbf{V}}_{\mathcal{G}_1,\mathcal{G}_2} = \nu^T \mathbf{U} \nu \hat{\mathbf{\Sigma}}(\mathbf{x})$.

Theorem (extension of Theorem 4 in Gao et al. 2022)

Let $\mathbf{U} \in \mathcal{CS}(n)$ and $\hat{\mathbf{\Sigma}}(\mathbf{X}^{(n)})$ be a positive definite estimator of $\mathbf{\Sigma}$ such that

$$\lim_{n\to\infty} \mathbb{P}_{H^{\left\{\mathcal{G}_{1}^{(n)},\mathcal{G}_{2}^{(n)}\right\}}}\left(\hat{\boldsymbol{\Sigma}}(\boldsymbol{\mathsf{X}}^{(n)})\succeq\boldsymbol{\boldsymbol{\Sigma}}\left|\,\mathcal{G}_{1}^{(n)},\mathcal{G}_{2}^{(n)}\in\mathcal{C}(\boldsymbol{\mathsf{X}}^{(n)})\right.\right)=1, \tag{$\boldsymbol{\Sigma}$ over-est)}$$

then, for any $\alpha \in [0,1]$, we have

$$\limsup_{n \to \infty} \mathbb{P}_{H_0^{\{\mathcal{G}_1^{(n)},\mathcal{G}_2^{(n)}\}}} \left(p_{\hat{\mathbf{V}}_{\mathcal{G}_1^{(n)},\mathcal{G}_2^{(n)}}} \big(\mathbf{X}^{(n)}; \big\{ \mathcal{G}_1^{(n)},\mathcal{G}_2^{(n)} \big\} \big) \leq \alpha \, \Big| \, \mathcal{G}_1^{(n)},\mathcal{G}_2^{(n)} \in \mathcal{C} \big(\mathbf{X}^{(n)} \big) \Big) \leq \alpha.$$

Over-estimation of Σ for known U

Let $\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{U}^{(n)}, \boldsymbol{\Sigma})$ with $\mathbf{U}^{(n)} \in \mathcal{CS}(n)$ and consider

$$\rho_{\hat{\boldsymbol{V}}_{\mathcal{G}_1,\mathcal{G}_2}}(\boldsymbol{x};\{\mathcal{G}_1,\mathcal{G}_2\}) = 1 - \mathbb{F}_{\boldsymbol{\rho}}\bigg(\|\boldsymbol{x}^{\mathsf{T}}\boldsymbol{\nu}\|_{\hat{\boldsymbol{V}}_{\mathcal{G}_1,\mathcal{G}_2}};\mathcal{S}_{\hat{\boldsymbol{V}}_{\mathcal{G}_1,\mathcal{G}_2}}(\boldsymbol{x},\{\mathcal{G}_1,\mathcal{G}_2\})\bigg)$$

where $\hat{\mathbf{V}}_{G_1,G_2} = \nu^T \mathbf{U} \nu \hat{\mathbf{\Sigma}}(\mathbf{x})$.

Theorem (extension of Theorem 4 in Gao et al. 2022)

Let $\mathbf{U} \in \mathcal{CS}(n)$ and $\hat{\mathbf{\Sigma}}(\mathbf{X}^{(n)})$ be a positive definite estimator of $\mathbf{\Sigma}$ such that

$$\lim_{n\to\infty} \mathbb{P}_{H^{\left\{\mathcal{G}_{1}^{(n)},\mathcal{G}_{2}^{(n)}\right\}}}\left(\hat{\boldsymbol{\Sigma}}(\boldsymbol{\mathsf{X}}^{(n)})\succeq\boldsymbol{\boldsymbol{\Sigma}}\left|\,\mathcal{G}_{1}^{(n)},\mathcal{G}_{2}^{(n)}\in\mathcal{C}(\boldsymbol{\mathsf{X}}^{(n)})\right.\right)=1, \tag{$\boldsymbol{\Sigma}$ over-est)}$$

then, for any $\alpha \in [0,1]$, we have

$$\limsup_{n\to\infty}\mathbb{P}_{H_0^{\left\{\mathcal{G}_1^{(n)},\mathcal{G}_2^{(n)}\right\}}}\left(p_{\hat{\mathbf{V}}_{\mathcal{G}_1^{(n)},\mathcal{G}_2^{(n)}}}\left(\mathbf{X}^{(n)};\left\{\mathcal{G}_1^{(n)},\mathcal{G}_2^{(n)}\right\}\right)\leq\alpha\left|\,\mathcal{G}_1^{(n)},\mathcal{G}_2^{(n)}\in\mathcal{C}\left(\mathbf{X}^{(n)}\right)\right)\leq\alpha.$$

 \rightarrow We propose an estimator $\hat{\Sigma}$ that satisfies (Σ over-est) under mild assumptions on $\{\mu^{(n)}\}$ and for several common models of dependence $\{\mathbf{U}^{(n)}\}$.

Thank you for your attention!

- Preprint : https://arxiv.org/abs/2310.11822,
- R package PCIdep at https://github.com/gonzalez-delgado/PCIdep/.

References

- Independence setting: L. L. Gao, J. Bien, and D. Witten. Selective inference for hierarchical clustering. Journal of the American Statistical Association, 0(0):1–11, 2022.
- Extension to k-means: Y. T. Chen and D. M. Witten. Selective inference for k-means clustering. Journal
 of Machine Learning Research, 24(152):1–41, 2023.
- Extension to feature-level test: B. Hivert, D. Agniel, R. Thiébaut, and B. P. Hejblum. Post-clustering difference testing: Valid inference and practical considerations with applications to ecological and biological data. Comput. Statist. Data Anal., 193:107916, May 2024.
- Alternative estimation of σ : Y. Yun and R. Foygel Barber. Selective inference for clustering with unknown variance. arXiv.2301.12999, 2023.

https://gonzalez-delgado.github.io/

Truncation sets

Independence setting

$$\hat{\mathcal{S}}_2 = \{ \phi \ge 0 : \mathcal{G}_1, \mathcal{G}_2 \in \mathcal{C}(\mathbf{x}_2'(\phi)) \}, \tag{1}$$

$$\mathbf{x}_{2}'(\phi) = \mathbf{x} + \frac{\nu}{\|\nu\|_{2}^{2}} \left(\phi - \|\mathbf{x}^{T}\nu\|_{2}\right) \operatorname{dir}(\mathbf{x}^{T}\nu), \tag{2}$$

Arbitrary dependence setting

$$\hat{\mathcal{S}}_{V_{\mathcal{G}_1},\mathcal{G}_2} = \left\{ \phi \ge 0 : \mathcal{G}_1, \mathcal{G}_2 \in \mathcal{C} \left(\mathbf{x}'_{V_{\mathcal{G}_1},\mathcal{G}_2}(\phi) \right) \right\}, \tag{3}$$

$$\mathbf{x}_{\mathsf{V}_{\mathcal{G}_1,\mathcal{G}_2}}'(\phi) = \mathbf{x} + \frac{\nu}{\|\nu\|_2^2} \left(\phi - \|\mathbf{x}^\mathsf{T}\nu\|_{\mathsf{V}_{\mathcal{G}_1,\mathcal{G}_2}} \right) \operatorname{dir}_{\mathsf{V}_{\mathcal{G}_1,\mathcal{G}_2}}(\mathbf{x}^\mathsf{T}\nu). \tag{4}$$

Lemma (scale transformation)

$$\hat{\mathcal{S}}_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} = \frac{\|\mathbf{x}^T \boldsymbol{\nu}\|_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}}}{\|\mathbf{x}^T \boldsymbol{\nu}\|_2} \, \hat{\mathcal{S}}_2 \tag{5}$$

Asymptotic over-estimator of Σ

Let
$$\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{U}^{(n)}, \boldsymbol{\Sigma})$$
.

For a given estimator $\hat{\Sigma}(X^{(n)})$ of Σ , assessing whether $\hat{\Sigma}(X^{(n)}) \succeq \Sigma$ asymptotically strongly depends on how the sequences $\{\mu^{(n)}\}_{n\in\mathbb{N}}$ and $\{U^{(n)}\}_{n\in\mathbb{N}}$ grow up to infinity.

Asymptotic over-estimator of Σ

Let
$$\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{U}^{(n)}, \boldsymbol{\Sigma}).$$

For a given estimator $\hat{\Sigma}(X^{(n)})$ of Σ , assessing whether $\hat{\Sigma}(X^{(n)}) \succeq \Sigma$ asymptotically strongly depends on how the sequences $\{\mu^{(n)}\}_{n\in\mathbb{N}}$ and $\{U^{(n)}\}_{n\in\mathbb{N}}$ grow up to infinity.

Estimator candidate

$$\hat{\mathbf{\Sigma}} = \hat{\mathbf{\Sigma}} (\mathbf{X}) = \frac{1}{n-1} (\mathbf{X} - \bar{\mathbf{X}})^{\mathsf{T}} \mathbf{U}^{-1} (\mathbf{X} - \bar{\mathbf{X}}), \qquad \text{(estimator)}$$

where $\bar{\mathbf{X}}$ is a $n \times p$ matrix having as rows the mean across rows of \mathbf{X} .

Asymptotic over-estimator of Σ

Let
$$\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{U}^{(n)}, \boldsymbol{\Sigma})$$
.

For a given estimator $\hat{\Sigma}\left(\mathbf{X}^{(n)}\right)$ of Σ , assessing whether $\hat{\Sigma}\left(\mathbf{X}^{(n)}\right) \succeq \Sigma$ asymptotically strongly depends on how the sequences $\{\mu^{(n)}\}_{n\in\mathbb{N}}$ and $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ grow up to infinity.

Estimator candidate

$$\hat{\mathbf{\Sigma}} = \hat{\mathbf{\Sigma}} \left(\mathbf{X} \right) = \frac{1}{n-1} \left(\mathbf{X} - \bar{\mathbf{X}} \right)^{\mathsf{T}} \mathbf{U}^{-1} \left(\mathbf{X} - \bar{\mathbf{X}} \right), \tag{estimator}$$

where $\bar{\mathbf{X}}$ is a $n \times p$ matrix having as rows the mean across rows of \mathbf{X} .

 \to Assumptions on $\{\mu^{(n)}\}_{n\in\mathbb{N}}$ and $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ to ensure that (estimator) a.s. asymptotically overestimates Σ ?

Assumptions on $\mu^{(n)}$

Assumptions 1 and 2 in Gao et al. 2022 (Assumption 1)

For all $n \in \mathbb{N}$, there are exactly K^* distinct mean vectors among the first n observations, i.e.

$$\left\{\mu_i^{(n)}\right\}_{i=1,\ldots,n} = \left\{\theta_1,\ldots,\theta_{K^*}\right\}.$$

Besides, the proportion of the first n observations that have mean vector θ_k converges to $\pi_k > 0$, i.e.

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{\mu_i^{(n)} = \theta_k\} = \pi_k, \tag{as-1}$$

for all $k \in \{1, \dots, K^*\}$, where $\sum_{k=1}^{K^*} \pi_k = 1$.

Assumptions on $\mu^{(n)}$

Assumptions 1 and 2 in Gao et al. 2022 (Assumption 1)

For all $n \in \mathbb{N}$, there are exactly K^* distinct mean vectors among the first n observations, i.e.

$$\left\{\mu_{i}^{(n)}\right\}_{i=1,...,n} = \{\theta_{1},...,\theta_{K^{*}}\}.$$

Besides, the proportion of the first n observations that have mean vector θ_k converges to $\pi_k > 0$, i.e.

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{\mu_i^{(n)} = \theta_k\} = \pi_k,$$
 (as-1)

for all $k \in \{1, \dots, K^*\}$, where $\sum_{k=1}^{K^*} \pi_k = 1$.

 \diamond If $\mathbf{U}^{(n)} = \mathbf{I}_n$, this is the only requirement to ensure asymp. over-estimation of Σ .

Assumptions on $\mu^{(n)}$

Assumptions 1 and 2 in Gao et al. 2022 (Assumption 1)

For all $n \in \mathbb{N}$, there are exactly K^* distinct mean vectors among the first n observations, i.e.

$$\left\{\mu_i^{(n)}\right\}_{i=1,\ldots,n} = \left\{\theta_1,\ldots,\theta_{K^*}\right\}.$$

Besides, the proportion of the first n observations that have mean vector θ_k converges to $\pi_k > 0$, i.e.

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{\mu_i^{(n)} = \theta_k\} = \pi_k,$$
 (as-1)

for all $k \in \{1, ..., K^*\}$, where $\sum_{k=1}^{K^*} \pi_k = 1$.

- \diamond If $\mathbf{U}^{(n)}=\mathbf{I}_n$, this is the only requirement to ensure asymp. over-estimation of $\mathbf{\Sigma}$.
- \diamond For general $\mathbf{U}^{(n)}$, the quantities

$$\frac{1}{n} \sum_{l,s=1}^{n} \left(U^{(n)} \right)_{ls}^{-1} \mathbb{1} \{ \mu_{l}^{(n)} = \theta_{k} \} \mathbb{1} \{ \mu_{s}^{(n)} = \theta_{k'} \}$$

are also required to **converge with explicit limit** as *n* tends to infinity.

One more assumption on $\mu^{(n)}$ for non-diagonal $\mathbf{U}^{(n)}$

Assumption on $\mu^{(n)}$ for non-diagonal $\mathbf{U}^{(n)}$ (Assumption 2)

If $\mathbf{U}^{(n)}$ is non-diagonal for all $n \in \mathbb{N}$, for any $k, k' \in \{1, \dots, K^*\}$, the proportion of the first n observations at distance $r \geq 1$ in $\mathbf{X}^{(n)}$ having means θ_k and $\theta_{k'}$ converges, and its limit converges to $\pi_k \pi_{k'}$ when the lag r tends to infinity. More precisely,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n-r} \mathbb{1}\{\mu_i = \theta_k\} \, \mathbb{1}\{\mu_{i+r} = \theta_{k'}\} = \pi_{kk'}^r \xrightarrow[r \to \infty]{} \pi_k \, \pi_{k'}. \tag{as-2}$$

We are asking the proportion of pairs of observations having a given a pair of means to approach the product of individual proportions (as-1) when both observations are far away in $\mathbf{X}^{(n)}$.

Assumptions on the sequence $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$

Assumption on $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ (Assumption 3)

Every superdiagonal of $(\mathbf{U}^{(n)})^{-1}$ defines asymptotically a convergent sequence, whose limits sum up to a real value. More precisely, for any $i \in \mathbb{N}$ and any $r \geq 0$,

$$\lim_{n\to\infty} \left(U^{(n)}\right)_{i\,i+r}^{-1} = \Lambda_{i\,i+r}, \quad \text{where} \quad \lim_{i\to\infty} \Lambda_{i\,i+r} = \lambda_r \quad \text{and} \quad \sum_{r=0}^{\infty} \lambda_r = \lambda \in \mathbb{R}.$$

Moreover, for each $r \ge 0$, the sequence $\{(U^{(n)})_{i,i+r}^{-1}\}_{n \in \mathbb{N}}$ satisfies any of the following conditions :

- (i) It is dominated by a summable sequence i.e. $\left| \left(U^{(n)} \right)_{i\,i+r}^{-1} \Lambda_{i\,i+r} \right| \leq \alpha_i \,\,\forall\,\, n \in \mathbb{N},$ with $\{\alpha_i\}_{i=1}^{\infty} \in \ell_1$,
- (ii) For each $i \in \mathbb{N}$, it is non-decreasing or non-increasing.

Some admissible dependence models for $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$

Remark 1 (Diagonal)

Let $\mathbf{U}^{(n)}=\mathrm{diag}(\lambda_1,\ldots,\lambda_n)$. If the sequence $\{\lambda_n\}_{n\in\mathbb{N}}$ is convergent, then the sequence $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ satisfies Assumption 3.

Some admissible dependence models for $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$

Remark 1 (Diagonal)

Let $\mathbf{U}^{(n)}=\mathrm{diag}(\lambda_1,\ldots,\lambda_n)$. If the sequence $\{\lambda_n\}_{n\in\mathbb{N}}$ is convergent, then the sequence $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ satisfies Assumption 3.

Remark 2 (Compound symmetry)

Let $a,b\in\mathbb{R}$ with $b\neq a\geq 0$. If $\mathbf{U}^{(n)}=b\mathbf{1}_{n\times n}+(a-b)\mathbf{I}_n$, where $\mathbf{1}_{n\times n}$ is a $n\times n$ matrix of ones, then $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ satisfies Assumption 3.

Some admissible dependence models for $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$

Remark 1 (Diagonal)

Let $\mathbf{U}^{(n)}=\mathrm{diag}(\lambda_1,\ldots,\lambda_n)$. If the sequence $\{\lambda_n\}_{n\in\mathbb{N}}$ is convergent, then the sequence $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ satisfies Assumption 3.

Remark 2 (Compound symmetry)

Let $a,b\in\mathbb{R}$ with $b\neq a\geq 0$. If $\mathbf{U}^{(n)}=b\mathbf{1}_{n\times n}+(a-b)\mathbf{I}_n$, where $\mathbf{1}_{n\times n}$ is a $n\times n$ matrix of ones, then $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ satisfies Assumption 3.

Remark 3 (AR(P))

Let $\mathbf{U}^{(n)}$ be the covariance matrix of an auto-regressive process of order $P \geq 1$ such that, if P > 2, $\beta_k \beta_{k'} \geq 0$ for all $k, k' \in \{1, \dots, P\}$. Then, the sequence $\{\mathbf{U}^{(n)}\}_{n \in \mathbb{N}}$ satisfies Assumption 3.

Three dependence settings

- (a) ${\bf U}={\bf I}_n$ and ${\bf \Sigma}$ is the covariance matrix of an AR(1) model, i.e. $\Sigma_{ij}=\sigma^2\rho^{|i-j|}$, with $\sigma=1$ and $\rho=0.5$.
- (b) **U** is a compound symmetry covariance matrix, i.e. $\mathbf{U} = b + (a b)\mathbf{I}_n$, with a = 0.5 and b = 1. Σ is a Toeplitz matrix, i.e. $\Sigma_{ij} = t(|i-j|)$, with t(s) = 1 + 1/(1+s) for $s \in \mathbb{N}$.
- (c) **U** is the covariance matrix of an AR(1) model with $\sigma=1$ and $\rho=0.1$. Σ is a diagonal matrix with diagonal entries given by $\Sigma_{ii}=1+1/i$.

Global null hypothesis

Let n=100, $\mu=\mathbf{0}_{n\times p}$, and set $\mathcal C$ to choose three clusters. Then, randomly select two groups and test for the difference of their means.

Global null hypothesis

Let n=100, $\mu=\mathbf{0}_{n\times p}$, and set $\mathcal C$ to choose three clusters. Then, randomly select two groups and test for the difference of their means.

Conditional power

Conditional power = probability of rejecting the null for a randomly selected pair of clusters given that they are different.

Let μ divide the n=50 observations into three true clusters, for $\delta \in [4,10.5]$:

$$\mu_{ij} = \begin{cases} -\frac{\delta}{2} & \text{if } i \leq \lfloor \frac{n}{3} \rfloor, \\ \frac{\sqrt{3}\delta}{2} & \text{if } \lfloor \frac{n}{3} \rfloor < i \leq \lfloor \frac{2n}{3} \rfloor, \quad \forall i \in \{1, \dots, n\}, \, \forall j \in \{1, \dots, p = 10\}, \\ \frac{\delta}{2} & \text{otherwise.} \end{cases}$$

Conditional power

Conditional power = probability of rejecting the null for a randomly selected pair of clusters given that they are different.

Let μ divide the n=50 observations into three true clusters, for $\delta \in [4,10.5]$:

$$\mu_{ij} = \begin{cases} -\frac{\delta}{2} & \text{if } i \leq \lfloor \frac{n}{3} \rfloor, \\ \frac{\sqrt{3}\delta}{2} & \text{if } \lfloor \frac{n}{3} \rfloor < i \leq \lfloor \frac{2n}{3} \rfloor, \quad \forall i \in \{1, \dots, n\}, \, \forall j \in \{1, \dots, p = 10\}, \\ \frac{\delta}{2} & \text{otherwise.} \end{cases}$$

Let

$$X \sim \mathcal{MN}_{n \times p}(\mu, \mathbf{U}, \mathbf{\Sigma}).$$
 (dep)

For n=500 and p=10, we simulated K=10000 samples drawn from (dep) in settings (a), (b) and (c) with μ being divided into two clusters :

$$\mu_{ij} = \begin{cases} \frac{\delta}{j} & \text{if } i \leq \frac{n}{2}, \\ -\frac{\delta}{j} & \text{otherwise,} \end{cases} \quad \forall i \in \{1, \dots, n\}, \forall j \in \{1, \dots, p\},$$

with $\delta \in \{4,6\}$.

For HAC with average linkage we set $\mathcal C$ to chose three clusters. Then, we kept the samples for which (H0) held when comparing two randomly selected clusters.

Hierarchical clustering of Hst5

Hst5 ensemble simulated with Flexible-Meccano (FM) ² and filtered by SAXS data³

- n = 2000 conformations
- Featured by pairwise Euclidean distances of 24 amino acids $\Rightarrow p = 276$
- No temporal evolution in FM simulation : $\mathbf{U}^{(n)} = \mathbf{I}_n$
- Σ unknown to be estimated

Strategy

Hierarchical clustering with average linkage, find 6 clusters.

^{2.} Ozenne et al. Bioinformatics 2012, Bernadó et al. PNAS 2005. 3. Sagar et al. J. Chem. Theory Comput 2021.

Hierarchical clustering of Hst5

Pairwise p-values corrected for multiplicity (BH)

Cluster	1	2	3	4	5
2	2.187589·10 ⁻⁴				
3	$3.039844 \cdot 10^{-11}$	$1.41 \cdot 10^{-3}$			
4	$1.070993 \cdot 10^{-10}$	0.300540	$2.98464 \cdot 10^{-4}$		
5	$3.038979 \cdot 10^{-16}$	0.093018	$6.015797 \cdot 10^{-5}$	0.105446	
6	1.729616·10 ⁻⁶	0.010612	9.290826·10 ⁻⁹	$2.105 \cdot 10^{-3}$	5.624624·10 ⁻⁵