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Post-clustering inference

• Simulate N (0, 1) + U(−0.2, 0.2)

• Ask k-means to find 2 clusters (data-driven hypothesis selection)

• Test for the difference of cluster means (inference after selection)

• Ignoring adaptive selection : pZ = 10−67,

• Accounting for adaptive selection : pAS = 0.84 (Chen and Witten 2023).

Adapted from Hivert et al. 2024
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Post-clustering inference
Framework setting

• Let C(·) be a clustering algorithm, X a n × p random matrix with E(X) = µ.

• Let Xi (resp. µi ) denote the i-th row of X (resp. µ) for i ∈ [n] = {1, . . . , n}.

• For any G ⊂ {1, . . . , n}, let X̄G = 1
|G|

∑
i∈G Xi and µ̄G = 1

|G|
∑

i∈G µi .

• Let G1,G2 ⊂ {1, . . . , n} be two non-overlapping groups of observations.
Considering the column vector νG1,G2

= ν having as components

νi = 1{i ∈ G1}/|G1| − 1{i ∈ G2}/|G2|,

for i ∈ [n], we can write the difference between the (empirical) group means as

µ̄G1
− µ̄G2

= µT ν, and X̄G1
− X̄G2

= XT ν.

We are interested in the following null hypothesis :

H
{G1,G2}
0 : µT ν = 0. (H0)
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Post-clustering inference
The selective type I error for clustering

Goal : Testing (H0) by controlling the selective type I error for clustering at level α,
that is, by ensuring that :

P
H
{G1,G2}
0

(
reject H

{G1,G2}
0 based on X at level α

∣∣∣∣ G1,G2 ∈ C(X)
)

≤ α ∀α ∈ (0, 1).

Ideal p-value :

pideal = P
H
{G1,G2}
0

(
Critical region

∣∣∣∣ G1,G2 ∈ C(X)
)
.

Analytically tractable p-value :

ptractable = P
H
{G1,G2}
0

(
Critical region

∣∣∣∣ G1,G2 ∈ C(X)∩E(X)

)
.

... paying a price in power.

• Both pideal and ptractable control the selective type I error for clustering.
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Independence setting (I)
Gao, Bien and Witten 2022

Framework
Consider the model

X ∼ MN n×p(µ, In, σ
2Ip), (indep)

p-value for (H0) under (indep) (Gao, Bien and Witten 2022)

p(x; {G1,G2}) = P
H
{G1,G2}
0

(
∥XT ν∥2 ≥ ∥xT ν∥2

∣∣∣ G1,G2 ∈ C(X),

π⊥
ν X = π⊥

ν x , dir
(
XT ν

)
= dir

(
xT ν

))
,

(p-GBW)

where π⊥
ν = In − ννT /∥ν∥22 and dir(v) = v/∥v∥21{v ̸= 0} for all v ∈ Rp .

The extra conditioning event allows to rewrite :

{G1,G2 ∈ C(X),π⊥
ν X = π⊥

ν x , dir
(
XT ν

)
= dir

(
xT ν

)
} =

{∥XT ν∥2 ∈ S2(x; {G1,G2}), π⊥
ν X = π⊥

ν x, dir
(
XT ν

)
= dir

(
xT ν

)
}.
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Independence setting (II)
Gao, Bien and Witten 2022

p-value for (H0) under (indep) (Gao, Bien and Witten 2022)

p(x; {G1,G2}) = P
H
{G1,G2}
0

(
∥XT ν∥2 ≥ ∥xT ν∥2

∣∣∣ ∥XT ν∥2 ∈ S2(x; {G1,G2}),

π⊥
ν X = π⊥

ν x , dir
(
XT ν

)
= dir

(
xT ν

))
.

Strategy to derive a tractable form of p(x; {G1,G2})

• XT ν ∼ Np(0p , σ2∥ν∥22 Ip) under (H0),

• Choice of the norm ∥·∥2 → ∥XT ν∥2 ∼ σ∥ν∥2 · χp under (H0),

• {π⊥
ν X = π⊥

ν x , dir
(
XT ν

)
= dir

(
xT ν

)
} is independent of ∥XT ν∥2 →

p(x; {G1,G2}) is written as the CDF of a truncated χp .

Theorem 1 in Gao, Bien and Witten 2022

p(x; {G1,G2}) = 1− Fp
(
∥XT ν∥2;σ∥ν∥2,

)
where Fp(t; c,S) denotes the CDF of a cχp random variable truncated to the set S.
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Independence is usually unrealistic
Example : clustering of flexible protein structures
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Ignoring dependency prevents selective type I error control

• Simulate Xi ∼ Np(Op ,Σ) with X1, . . . ,Xn dependent.

• Set C to choose three clusters, randomly select two groups and test for the
difference of their means assuming Σ = σ2Ip and independent observations.
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U = AR(1), Σ = Toeplitz (off−diagonal entries neglected)
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Arbitrary dependence setting
General strategy (I)

Framework
Consider the model

X ∼ MN n×p(µ,U,Σ) ⇔ vec(X) ∼ Nnp(vec(µ),Σ⊗ U), (dep)

where U ∈ Rn×n and Σ ∈ Rp×p are positive definite.

That means :

• Xi ∼ Np(µi ,UiiΣ) (Σ ↔ dependence between features),

• X j ∼ Nn(µj ,ΣjjU) (U ↔ dependence between observations).

In this model, XT ν ∼ Np(0p ,VG1,G2
) under (H0), where VG1,G2

= νTUνΣ.

Therefore, ∥XT ν∥VG1,G2
∼ χp under (H0), where ∥v∥VG1,G2

=
√

vTV−1
G1,G2

v , v ∈ Rp .

Candidate p-value for (H0) under (dep)

pVG1,G2
(x; {G1,G2}) = P

H
{G1,G2}
0

(
∥XT ν∥VG1,G2

≥ ∥xT ν∥VG1,G2

∣∣∣ G1,G2 ∈ C(X),

π⊥
ν X = π⊥

ν x , dirVG1,G2

(
XT ν

)
= dirVG1,G2

(
xT ν

))
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Arbitrary dependence setting
General strategy (II)

Candidate p-value for (H0) under (dep)

pVG1,G2
(x; {G1,G2}) = P

H
{G1,G2}
0

(
∥XT ν∥VG1,G2

≥ ∥xT ν∥VG1,G2

∣∣∣
∥XT ν∥VG1,G2

∈ SVG1,G2
(x; {G1,G2}), π⊥

ν X = π⊥
ν x , dirVG1,G2

(
XT ν

)
= dirVG1,G2

(
xT ν

))
.

For any p × p symmetric positive definite matrix A, let ∥v∥2A = vTA−1v and
dirA(v) = v/∥v∥A1{v ̸= 0} for all v ∈ Rp .

Proposition

(i) A = cVG1,G2
for some c > 0

(H0)⇔ ||XT νG1,G2
||A ⊥⊥ dirA

(
XT νG1,G2

)
,

(ii) XT νG1,G2
⊥⊥ π⊥

νG1,G2
X for all (G1,G2) ⇔ U ∈ CS(n),

where CS(n) is the class of compound symmetry positive definite matrices :

CS(n) =
{
(a− b)In + b1n×n : a ≥ 0, −

a

n − 1
< b < a

}
.
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Arbitrary dependence setting
Post-clustering inference for U ∈ CS(n)

The direct extension of the strategy of Gao et al. to the general model (dep) imposes
a compound symmetry constraint on the dependence between observations.

Theorem
Let C be a clustering algorithm and x a realization of X ∼ MN n×p(µ,U,Σ) with
U ∈ CS(n). Then,

pVG1,G2
(x; {G1,G2}) = 1− Fp

(
∥xT ν∥VG1,G2

,
)

(p-tract)

where Fp(t,S) is the cumulative distribution function of a χp random variable
truncated to the set S.
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Scale trans. of S2

)
(p-tract)

where Fp(t,S) is the cumulative distribution function of a χp random variable
truncated to the set S.

• The control of the sel. type I error is robust to moderate deviations of
U ∈ CS(n).
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What if U /∈ CS(n) ?

• The projection π⊥
ν X is not independent of XT ν in general.

• Therefore, the distribution of interest is not that of XT ν, but rather that of the
conditioned vector :

X̄ν(x) := XT ν
∣∣ {π⊥

ν X = π⊥
ν x, dir(XT ν) = ±dir(xT ν)}, for x ∈ Rn×p ,

Theorem
Let C be a clustering algorithm and x a realization of X ∼ MN n×p(µ,U,Σ). Then,

X̄ν(x) ∼ Np (0, Γx) ,

under (H0), where

Γx = (Ip ⊗ νT )(Σ⊗ U− (Σ⊗ U)Ax
⊤(Ax(Σ⊗ U)Ax

⊤)†Ax(Σ⊗ U))(Ip ⊗ ν),

Ax =

[
π⊥

xν (Ip ⊗ πν)
Ip ⊗ π⊥

ν

]
,

πν = In − π⊥
ν , xν = vec(πνx) and π⊥

xν = Inp − xTν xν/∥xν∥22.
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Arbitrary U structures

Candidate p-value for (H0) under arbitrary U

pΓ(x; {G1,G2}) = P
H
{G1,G2}
0

(
∥XT ν∥Γx ≥ ∥xT ν∥Γx

∣∣∣ G1,G2 ∈ C(X),

π⊥
ν X = π⊥

ν x , dir
(
XT ν

)
= ±dir

(
xT ν

))
,

where ∥v∥2Γx = vTΓ†xv , ∀ v ∈ Rp .

Proposition

The quantity ∥X̄ν(x)∥Γx follows x-a.s. a χ1 distribution under (H0). Moreover,

pΓ(x; {G1,G2}) = 1− F1

(
∥xT ν∥Γx , SΓx (x; {G1,G2})

)
,

where F1(t,S) is the cumulative distribution function of a χ1 random variable
truncated to the set S and SΓx (x; {G1,G2}) is a scale transformation of S2.

• Assessing whether pΓ(X; {G1,G2}) controls the selective type I error is a
challenging problem, as it requires understanding the behavior of the null

distribution of ∥X̄ν(x)∥2ΓX = X̄ν(x)TΓ
†
XX̄ν(x).
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Arbitrary U structures
Numerical simulations suggest the unsuitability of pΓ(x; {G1,G2})
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Defining a tractable p-value that ensures the selective type I error control requires the
conditioning on events that are independent of the test statistic.
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Estimation of unknown parameters
Independence setting (Gao et al. 2022)

Let X(n) ∼ MNn×p(µ(n), In, σ2Ip) and consider

p̂(x; {G1,G2}) = 1− Fp

(
∥xT ν∥2; σ̂∥ν∥2,S2(x; {G1,G2})

)
.

Theorem 4 in Gao et al. 2022
If σ̂ is an estimator of σ such that

lim
n→∞

P
H
{G(n)

1
,G(n)

2
}

0

(
σ̂
(
X(n)

)
≥ σ

∣∣∣G(n)
1 ,G(n)

2 ∈ C
(
X(n)

))
= 1, (σ over-est)

then, for any α ∈ [0, 1], it holds

lim sup
n→∞

P
H
{G(n)

1
,G(n)

2
}

0

(
p̂
(
X(n);

{
G(n)
1 ,G(n)

2

})
≤ α

∣∣∣G(n)
1 ,G(n)

2 ∈ C
(
X(n)

))
≤ α.

→ Gao et al. propose an estimator σ̂ that satisfies (σ over-est) under mild
assumptions on {µ(n)}n∈N.
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Estimation of unknown parameters
Arbitrary dependence setting

Let
X ∼ MN n×p(µ,U,Σ). (dep)

Can we estimate both U and Σ ?

• Under the general model (dep), the scale matrices U and Σ are non-identifiable.

• Multiple copies of X are needed to simultaneously estimate U and Σ.

• We assume that either U or Σ is known :

X ∼ MNn×p(µ,U,Σ) ⇔ XT ∼ MNp×n(µ
T ,Σ,U).

→ How to extend the notion of over-estimation to matrices ?

Loewner partial order ⪰
Let A,B be two Hermitian matrices. A ⪰ B if and only if A− B is positive
semidefinite (PSD).

Remark : If A = σ̂Ip and B = σIp , the condition A ⪰ B becomes σ̂ ≥ σ.
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Over-estimation of Σ for known U

Let X(n) ∼ MNn×p(µ(n),U(n),Σ) with U(n) ∈ CS(n) and consider

pV̂G1,G2
(x; {G1,G2}) = 1− Fp

(
∥xT ν∥V̂G1,G2

;SV̂G1,G2
(x, {G1,G2})

)

where V̂G1,G2
= νTUνΣ̂(x).

Theorem (extension of Theorem 4 in Gao et al. 2022)

Let U ∈ CS(n) and Σ̂
(
X(n)

)
be a positive definite estimator of Σ such that

lim
n→∞

P
H
{G(n)

1
,G(n)

2
}

0

(
Σ̂
(
X(n)

)
⪰ Σ

∣∣∣G(n)
1 ,G(n)

2 ∈ C
(
X(n)

))
= 1, (Σ over-est)

then, for any α ∈ [0, 1], we have

lim sup
n→∞

P
H
{G(n)

1
,G(n)

2
}

0

(
pV̂

G(n)
1

,G(n)
2

(
X(n);

{
G(n)
1 ,G(n)

2

})
≤ α

∣∣∣G(n)
1 ,G(n)

2 ∈ C
(
X(n)

))
≤ α.

→ We propose an estimator Σ̂ that satisfies (Σ over-est) under mild assumptions on
{µ(n)} and for several common models of dependence {U(n)}.
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1 ,G(n)

2

})
≤ α

∣∣∣G(n)
1 ,G(n)

2 ∈ C
(
X(n)

))
≤ α.

→ We propose an estimator Σ̂ that satisfies (Σ over-est) under mild assumptions on
{µ(n)} and for several common models of dependence {U(n)}.
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Thank you for your attention !

• Preprint : https://arxiv.org/abs/2310.11822,

• R package PCIdep at https://github.com/gonzalez-delgado/PCIdep/.
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Truncation sets

Independence setting

Ŝ2 = {ϕ ≥ 0 : G1,G2 ∈ C(x′2(ϕ))}, (1)

x′2(ϕ) = x+
ν

∥ν∥22

(
ϕ− ∥xT ν∥2

)
dir(xT ν), (2)

Arbitrary dependence setting

ŜVG1,G2
=

{
ϕ ≥ 0 : G1,G2 ∈ C

(
x′VG1,G2

(ϕ)
)}

, (3)

x′VG1,G2
(ϕ) = x+

ν

∥ν∥22

(
ϕ− ∥xT ν∥VG1,G2

)
dirVG1,G2

(xT ν). (4)

Lemma (scale transformation)

ŜVG1,G2
=

∥xT ν∥VG1,G2

∥xT ν∥2
Ŝ2 (5)
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Asymptotic over-estimator of Σ

Let X(n) ∼ MNn×p(µ(n),U(n),Σ).

For a given estimator Σ̂
(
X(n)

)
of Σ, assessing whether Σ̂

(
X(n)

)
⪰ Σ asymptotically

strongly depends on how the sequences {µ(n)}n∈N and {U(n)}n∈N grow up to infinity.

Estimator candidate

Σ̂ = Σ̂ (X) =
1

n − 1

(
X− X̄

)T
U−1

(
X− X̄

)
, (estimator)

where X̄ is a n × p matrix having as rows the mean across rows of X.

→ Assumptions on {µ(n)}n∈N and {U(n)}n∈N to ensure that (estimator) a.s.
asymptotically overestimates Σ ?
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Assumptions on µ(n)

Assumptions 1 and 2 in Gao et al. 2022 (Assumption 1)

For all n ∈ N, there are exactly K∗ distinct mean vectors among the first n
observations, i.e. {

µ
(n)
i

}
i=1,...,n

= {θ1, . . . , θK∗}.

Besides, the proportion of the first n observations that have mean vector θk converges
to πk > 0, i.e.

lim
n→∞

1

n

n∑
i=1

1{µ(n)
i = θk} = πk , (as-1)

for all k ∈ {1, . . . ,K∗}, where
∑K∗

k=1 πk = 1.

⋄ If U(n) = In, this is the only requirement to ensure asymp. over-estimation of Σ.
⋄ For general U(n), the quantities

1

n

n∑
l,s=1

(
U(n)

)−1

ls
1{µ(n)

l = θk}1{µ
(n)
s = θk′}

are also required to converge with explicit limit as n tends to infinity.



3/13

Assumptions on µ(n)

Assumptions 1 and 2 in Gao et al. 2022 (Assumption 1)

For all n ∈ N, there are exactly K∗ distinct mean vectors among the first n
observations, i.e. {

µ
(n)
i

}
i=1,...,n

= {θ1, . . . , θK∗}.

Besides, the proportion of the first n observations that have mean vector θk converges
to πk > 0, i.e.

lim
n→∞

1

n

n∑
i=1

1{µ(n)
i = θk} = πk , (as-1)

for all k ∈ {1, . . . ,K∗}, where
∑K∗

k=1 πk = 1.

⋄ If U(n) = In, this is the only requirement to ensure asymp. over-estimation of Σ.

⋄ For general U(n), the quantities

1

n

n∑
l,s=1

(
U(n)

)−1

ls
1{µ(n)

l = θk}1{µ
(n)
s = θk′}

are also required to converge with explicit limit as n tends to infinity.



3/13

Assumptions on µ(n)

Assumptions 1 and 2 in Gao et al. 2022 (Assumption 1)

For all n ∈ N, there are exactly K∗ distinct mean vectors among the first n
observations, i.e. {

µ
(n)
i

}
i=1,...,n

= {θ1, . . . , θK∗}.

Besides, the proportion of the first n observations that have mean vector θk converges
to πk > 0, i.e.

lim
n→∞

1

n

n∑
i=1

1{µ(n)
i = θk} = πk , (as-1)

for all k ∈ {1, . . . ,K∗}, where
∑K∗

k=1 πk = 1.

⋄ If U(n) = In, this is the only requirement to ensure asymp. over-estimation of Σ.
⋄ For general U(n), the quantities

1

n

n∑
l,s=1

(
U(n)

)−1

ls
1{µ(n)

l = θk}1{µ
(n)
s = θk′}

are also required to converge with explicit limit as n tends to infinity.



4/13

One more assumption on µ(n) for non-diagonal U(n)

Assumption on µ(n) for non-diagonal U(n) (Assumption 2)

If U(n) is non-diagonal for all n ∈ N, for any k, k ′ ∈ {1, . . . ,K∗}, the proportion of the
first n observations at distance r ≥ 1 in X(n) having means θk and θk′ converges, and
its limit converges to πkπk′ when the lag r tends to infinity. More precisely,

lim
n→∞

1

n

n−r∑
i=1

1{µi = θk}1{µi+r = θk′} = πr
kk′ −→

r→∞
πk πk′ . (as-2)

We are asking the proportion of pairs of observations having a given a pair of means
to approach the product of individual proportions (as-1) when both observations are

far away in X(n).
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Assumptions on the sequence {U(n)}n∈N

Assumption on {U(n)}n∈N (Assumption 3)

Every superdiagonal of
(
U(n)

)−1
defines asymptotically a convergent sequence, whose

limits sum up to a real value. More precisely, for any i ∈ N and any r ≥ 0,

lim
n→∞

(
U(n)

)−1

i i+r
= Λi i+r , where lim

i→∞
Λi i+r = λr and

∞∑
r=0

λr = λ ∈ R.

Moreover, for each r ≥ 0, the sequence {
(
U(n)

)−1

i i+r
}n∈N satisfies any of the following

conditions :

(i) It is dominated by a summable sequence i.e.
∣∣∣(U(n)

)−1

i i+r
− Λi i+r

∣∣∣ ≤ αi ∀ n ∈ N,
with {αi}∞i=1 ∈ ℓ1,

(ii) For each i ∈ N, it is non-decreasing or non-increasing.
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Some admissible dependence models for {U(n)}n∈N

Remark 1 (Diagonal)

Let U(n) = diag(λ1, . . . , λn). If the sequence {λn}n∈N is convergent, then the
sequence {U(n)}n∈N satisfies Assumption 3.

Remark 2 (Compound symmetry)

Let a, b ∈ R with b ̸= a ≥ 0. If U(n) = b1n×n + (a− b) In, where 1n×n is a n × n
matrix of ones, then {U(n)}n∈N satisfies Assumption 3.

Remark 3 (AR(P))

Let U(n) be the covariance matrix of an auto-regressive process of order P ≥ 1 such
that, if P > 2, βkβk′ ≥ 0 for all k, k ′ ∈ {1, . . . ,P}. Then, the sequence {U(n)}n∈N
satisfies Assumption 3.
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Numerical simulations

Three dependence settings

(a) U = In and Σ is the covariance matrix of an AR(1) model, i.e. Σij = σ2ρ|i−j|,
with σ = 1 and ρ = 0.5.

(b) U is a compound symmetry covariance matrix, i.e. U = b + (a− b)In, with
a = 0.5 and b = 1. Σ is a Toeplitz matrix, i.e. Σij = t(|i − j |), with
t(s) = 1 + 1/(1 + s) for s ∈ N.

(c) U is the covariance matrix of an AR(1) model with σ = 1 and ρ = 0.1. Σ is a
diagonal matrix with diagonal entries given by Σii = 1 + 1/i .
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Numerical simulations
Global null hypothesis

Let n = 100, µ = On×p , and set C to choose three clusters. Then, randomly select
two groups and test for the difference of their means.
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Numerical simulations
Conditional power

Conditional power = probability of rejecting the null for a randomly selected pair of
clusters given that they are different.

Let µ divide the n = 50 observations into three true clusters, for δ ∈ [4, 10.5] :

µij =


− δ

2
if i ≤ ⌊ n

3
⌋,√

3δ
2

if ⌊ n
3
⌋ < i ≤ ⌊ 2n

3
⌋,

δ
2

otherwise.
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Numerical simulations

Let
X ∼ MN n×p(µ,U,Σ). (dep)

For n = 500 and p = 10, we simulated K = 10000 samples drawn from (dep) in
settings (a), (b) and (c) with µ being divided into two clusters :

µij =

{
δ
j

if i ≤ n
2
,

− δ
j

otherwise,
∀ i ∈ {1, . . . , n}, ∀ j ∈ {1, . . . , p},

with δ ∈ {4, 6}.

For HAC with average linkage we set C to chose three clusters. Then, we kept the
samples for which (H0) held when comparing two randomly selected clusters.
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Numerical simulations
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Hierarchical clustering of Hst5

Hst5 ensemble simulated with Flexible-Meccano (FM) 2 and filtered by SAXS data3

• n = 2000 conformations

• Featured by pairwise Euclidean distances of 24 amino acids ⇒ p = 276

• No temporal evolution in FM simulation : U(n) = In

• Σ unknown to be estimated

Strategy

Hierarchical clustering with average linkage, find 6 clusters.

2. Ozenne et al. Bioinformatics 2012, Bernadó et al. PNAS 2005. 3. Sagar et al. J. Chem. Theory Comput 2021.
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Hierarchical clustering of Hst5

Cluster 4 (26.63% occupancy) Cluster 5 (30.73% occupancy) Cluster 6 (4.1% occupancy)

Cluster 1 (4.3% occupancy) Cluster 2 (32.43% occupancy) Cluster 3 (1.8% occupancy)
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Protein conformational clustering

Pairwise p-values corrected for multiplicity (BH)

Cluster 1 2 3 4 5

2 2.187589·10−4

3 3.039844·10−11 1.41·10−3

4 1.070993·10−10 0.300540 2.98464·10−4

5 3.038979·10−16 0.093018 6.015797·10−5 0.105446

6 1.729616·10−6 0.010612 9.290826·10−9 2.105·10−3 5.624624·10−5
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