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Goal: comparing a pair of IDP ensembles
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State of the art
Comparison of proteins

For rigid proteins

• Optimal rigid body superposition (Rao and Rossmann, 1973). Minimization of
Root-Mean-Square-Deviation (RMSD). Questioning the interpretation of RMSD
as an absolute metric (Maiorov and Crippen, 1994).

• Extension to ensemble version (Brüschweiler, 2003).

For energy landscapes

• RSMD-based metric between ensembles of ordered systems (Lindorff-Larsen and
Ferkinghoff-Borg, 2009).

• Graph-based representation of the conformational space based on a set of
low-energy conformations. Comparison using Wasserstein distance (Cazals et
al., 2015).

For disordered structures

• Averaged conformational properties over ensembles as informative descriptors
of their functionality (e.g. pairwise distances (Lazar et al., 2020)).
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In this work

• We define the structure of an ensemble as a set of probability distributions,
capturing its entire variability.

• The structures are compared using a metric that integrates the geometry of
the conformational space.

• Allows residue-specific detection of global and local differences.

• An overall distance between the pair of ensembles can be computed.

• Non-parametric framework (no model assumptions).

• No intermediate/approximation steps (e.g. clustering, dimensionality
reduction...).
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Conformational ensembles as a set of probability
distributions

Local structure

Dihedral angles distributions

For the residue at the i-th position, with i = 1, . . . , L, its dihedral angles (ϕi , ψi )
follow a probability distribution P l

i ∈ P(T2).

Local structure
We define the local structure of an ensemble as the L-tuple

(P l
1, . . . ,P

l
L), P l

i ∈ P(T2) for all i = 1, . . . , L.
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Conformational ensembles as a set of probability
distributions
Global structure

Defining a global structure

• We use the relative positions of residues (invariant under rigid-body motions).(
We define the position of a given residue as the the position
of its Cβ atom when it exists and of its Cα atom otherwise.

)
Idea: for every residue i along the sequence:

1 Define a residue-specific reference frame at i for every conformation,
2 Superimpose all reference frames ⇔ superimpose all the conformations,
3 Access to the distribution of the relative position of any other residue

j ̸= i with respect to i (point cloud in R3).
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Global structure
Reference frame overview

C̃β
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Global structure
Superposition of all the conformations
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Conformational ensembles as a set of probability
distributions
Global structure

Relative position distributions are point clouds in R3

For each pair of residues i ̸= j , we denote as Pg
i,j the probability distribution of their

relative positions, which is supported on R3.
Ensemble

hst5 - c36idp (run 0)

hst5 - disp (run 0)

Global structure
We define the global structure of an ensemble as the L(L− 1)/2-tuple

(Pg
1,2,P

g
1,3, . . . ,P

g
L−1,L), Pg

i,j ∈ P(R3) for all i = 1, . . . , L− 1, j = i + 1, . . . , L.
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Distance between local/global structures

Desired properties in a metric

1. Satisfying the mathematical properties that define a distance (being 0 if an
only if the two compared distributions are identical, symmetry and triangle
inequality),

2. Respecting (or, even better, integrating) the geometry of the underlying space.

In the litterature...

• Hellinger distance to compare (ϕ, ψ) distributions (Ting et al., 2019). Ignores
the geometry of the ground space (its periodicity).

• Symmetrized Kullback-Leibler (KL) divergence to compare ensembles of ordered
systems (Lindorff-Larsen and Ferkinghoff-Borg, 2009). Misses the geometrical
reliability, does not satisfy triangle inequality.

Here: Wasserstein distance

• Satisfies 1 and 2,

• Physical interpretation: minimum transportation cost needed to reconfigure the
mass of one probability distribution to recover the other.
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Distance between local/global structures
Wasserstein distance

Optimal Transport between two probability measures (Monge 1781, Kantorovich 1939)

Optimal way (in terms of transportation cost) to redistribute the mass of one
probability distribution to recover the other.

p-Wasserstein distance between two arbitrary measures

Wp
p (µ, ν) = min

π∈U(µ,ν)

∫
X×Y

c(x , y)pdπ(x , y) = min
(X ,Y )

{
E(X ,Y )(c(X ,Y )p) : X ∼ µ Y ∼ ν

}
.
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The comparison tool
Definition and representation

Consider two ensembles A, B, associated to two sequences of equal length L.

Difference between local structures
We define the difference between local structures of A and B as the L-tuple of
Wasserstein distances

(W l,A,B
1 , . . . ,W l,A,B

L ) =
(
W(P l,A

1 ,P l,B
1 ), . . . ,W(P l,A

L ,P l,B
L )

)
,

where P l,A
i (resp. P l,B

i ) denotes the i-th distribution of the local structure of ensemble
A (resp. B).
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i (resp. P l,B

i ) denotes the i-th distribution of the local structure of ensemble
A (resp. B).

Difference between local structures: significance

To each W l,A,B
i we can associate a p-value, accounting for the statistical significance

of the distance (∼ the plausibility of the true distance to be equal to zero).

J. González-Delgado, A. González-Sanz, J. Cortés, and P. Neuvial, “Two-sample goodness-of-fit tests on the flat
torus based on wasserstein distance and their relevance to structural biology,” 2021. arXiv:2108.00165.



Introduction Random structure and distances The comparison tool Results

The comparison tool
Definition and representation

Consider two ensembles A, B, associated to two sequences of equal length L.

Difference between local structures
We define the difference between local structures of A and B as the L-tuple of
Wasserstein distances

(W l,A,B
1 , . . . ,W l,A,B

L ) =
(
W(P l,A

1 ,P l,B
1 ), . . . ,W(P l,A

L ,P l,B
L )

)
,

where P l,A
i (resp. P l,B

i ) denotes the i-th distribution of the local structure of ensemble
A (resp. B).

Difference between global structures

We define the difference between global structures of A and B as the
L(L− 1)/2-tuple

(Wg,A,B
1,2 , . . . ,Wg,A,B

L−1,L) =
(
W(Pg,A

1,2 ,P
g,B
1,2 ), . . . ,W(Pg,A

L−1,L,P
g,B
L−1,L)

)
,

where Pg,A
i,j (resp. Pg,B

i,j ) denotes the i , j distribution of the global structure of

ensemble A (resp. B).



Introduction Random structure and distances The comparison tool Results

The comparison tool
Matrix representation
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The comparison tool
Account for uncertainty

Let A1, . . . ,AnI (resp. B1, . . . ,BnI ) be nI independent replicas of ensemble A
(resp. B).

The corrected difference between local structures of A and B is defined as
the L-tuple

(W̃ l,A,B
1 , . . . , W̃ l,A,B

L ),

where each corrected distance, for each i = 1, . . . , L, is defined as

W̃ l,A,B
i =


1

nI

nI∑
s=1

W l,As ,Bs
i

Inter-ensemble (W l,A,B
inter )

−
1

2(nI − 1)

nI∑
s=2

(
W l,A1,As

i +W l,B1,Bs
i

)
Intra-ensemble (W l,A,B

intra )


+

where, for any real number x , (x)+ = x if x > 0 and (x)+ = 0 otherwise.

• Noise reduction coming from uncertainty,

• Stand out residue-specific differences in the matrix representation.



Introduction Random structure and distances The comparison tool Results

The comparison tool
Account for uncertainty

Let A1, . . . ,AnI (resp. B1, . . . ,BnI ) be nI independent replicas of ensemble A
(resp. B). The corrected difference between local structures of A and B is defined as
the L-tuple

(W̃ l,A,B
1 , . . . , W̃ l,A,B

L ),

where each corrected distance, for each i = 1, . . . , L, is defined as

W̃ l,A,B
i =


1

nI

nI∑
s=1

W l,As ,Bs
i

Inter-ensemble (W l,A,B
inter )

−
1

2(nI − 1)

nI∑
s=2

(
W l,A1,As

i +W l,B1,Bs
i

)
Intra-ensemble (W l,A,B

intra )


+

where, for any real number x , (x)+ = x if x > 0 and (x)+ = 0 otherwise.

• Noise reduction coming from uncertainty,

• Stand out residue-specific differences in the matrix representation.



Introduction Random structure and distances The comparison tool Results

The comparison tool
Account for uncertainty

Let A1, . . . ,AnI (resp. B1, . . . ,BnI ) be nI independent replicas of ensemble A
(resp. B). The corrected difference between local structures of A and B is defined as
the L-tuple

(W̃ l,A,B
1 , . . . , W̃ l,A,B

L ),

where each corrected distance, for each i = 1, . . . , L, is defined as

W̃ l,A,B
i =


1

nI

nI∑
s=1

W l,As ,Bs
i

Inter-ensemble (W l,A,B
inter )

−
1

2(nI − 1)

nI∑
s=2

(
W l,A1,As

i +W l,B1,Bs
i

)
Intra-ensemble (W l,A,B

intra )


+

where, for any real number x , (x)+ = x if x > 0 and (x)+ = 0 otherwise.

• Noise reduction coming from uncertainty,

• Stand out residue-specific differences in the matrix representation.



Introduction Random structure and distances The comparison tool Results

The comparison tool
An interpretable scale

Definition of a continuous informative scale
Use the noise or uncertainty as a reference to which compare the inter-ensemble
distances, reflecting in which proportion they exceed the “default” intra-ensemble
ones.

The score
W̃ l,A,B

i

W l,A,B
intra

=
W l,A,B

inter −W l,A,B
intra

W l,A,B
intra

is the proportion of the intra-ensemble difference that represents the corrected
distance between both structures (how big are inter-ensemble distances when
compared to intra-ensemble ones).
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The comparison tool
Overall distance between a pair of ensembles

Remark
If d1, . . . , dL are L distances defined on L metric spaces X1, . . . ,XL, the function√

d2
1 + · · ·+ d2

L is a distance on the product space X1 × · · · × XL.

Overall local discrepancy

OW l,A,B =

(
L∑

i=1

(
W l,A,B

i

)2)1/2

Overall global discrepancy

OWg,A,B =

L−1∑
i=1

L∑
j=i+1

(
wijWg,A,B

i,j

)21/2

, withwij > 0 for all i , j ∈ {1, . . . , L},

where wij = w(|i − j |) is an increasing function of |i − j |.

Remark
If the corrected distances are used to define the overall discrepancies, triangle
inequality is no longer satisfied.
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Results
Some applications of WASCO

• Comparisons of MD simulations using different force fields

• Effect of filtering based on SAXS experimental data

• Assessing the convergence of a MD simulation
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Comparison of force fields

Results of MD simulations (Jephthah et al. 2021) for Hst5 using four different force-fields: AMBER ff99SB-disp
(disp), AMBER ff99SB-ILDN (ildn), CHARMM36IDPSFF (c36idp), and CHARMM36m (c36m).
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Histatin ensemble before and after filtering based on
experimental SAXS data
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Using the overall distance to assess the convergence of a
MD simulation

• Let T denote the current simulation time,

• Let 0 < t1 < t2 < · · · < tk = T be k time points.

If we denote At the conformational ensemble simulated at time t, we can compute the
overall distances

OW l
i = OW l,Ati−1

,Ati for all i = 2, . . . , k.

Analogously, we compute the overall global distances

OWg
i = OWg,Ati−1

,Ati for all i = 2, . . . , k.

Then, representing the OW l
i , OWg

i with respect to the ti will indicate whether the
simulation has converged if the curve has “stabilized” (i.e. attained an asymptote at
zero).
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Convergence of a MD simulation (I)
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Online convergence analysis for PEP3 ensemble simulated with force-fields c36idp,
c36m, disp and ildn.

Convergence ⇔ Asymptote at zero
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Convergence of a MD simulation (II)

Another example: K-18 domain of Tau

Converging ensembles of IDPs of this length is very very hard...
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Online convergence analysis for K-18 domain of Tau ensemble simulated with
AMBER99SB*-ILDN-tip4pD water models.

No convergence ⇔ No asymptote at zero
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Conclusions

• Novel approach to compare ensembles

• Specifically conceived for disordered systems (without a well-characterized
energy landscape)

• Implemented in python, open source

• Drawback: computationally expensive for large systems (unfeasible if L ≫ 200,
nA, nB ≥ 105)

• Future work: adapt WASCO to coarse-grain models and large ensembles
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