How to estimate cancer survival (an overview)

Javier González-Delgado

Institut de Mathématiques de Toulouse, LAAS-CNRS

March 24, 2022

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

The global cancer burden

Global map of cancer as a leading cause of premature death (i.e. at ages 30-69 years)

Figure: Wild C.P., Weiderpass E., Stewart B.W., editors (2020). World Cancer Report: Cancer Research for Cancer Prevention. Lyon, France: International Agency for Research on Cancer.

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

The *unequal* cancer burden

Inequalities in cancer

"The systematic differences in cancer occurence (incidence, mortality and survival) that exist between and within countries." $^1\,$

¹Wild C.P., Weiderpass E., Stewart B.W., editors (2020). *World Cancer Report: Cancer Research for Cancer Prevention*. Lyon, France: International Agency for Research on Cancer. Available from: http://publications.iarc.fr/586. Licence: CC BY-NC-ND 3.0 IGO.

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

The *unequal* cancer burden

Inequalities in cancer

"The systematic differences in cancer occurence (incidence, mortality and survival) that exist between and within countries." $^1\,$

¹Wild C.P., Weiderpass E., Stewart B.W., editors (2020). *World Cancer Report: Cancer Research for Cancer Prevention*. Lyon, France: International Agency for Research on Cancer. Available from: http://publications.iarc.fr/586. Licence: CC BY-NC-ND 3.0 IGO.

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

The *unequal* cancer burden

Inequalities in cancer

"The systematic differences in cancer occurence (incidence, mortality and survival) that exist between and within countries." $^1\,$

¹Wild C.P., Weiderpass E., Stewart B.W., editors (2020). *World Cancer Report: Cancer Research for Cancer Prevention*. Lyon, France: International Agency for Research on Cancer. Available from: http://publications.iarc.fr/586. Licence: CC BY-NC-ND 3.0 IGO.

Survival analysis (overview) 0000

The concept of net survival 0000

Net survival estimation on EPIC 000000

Evidence of cancer inequalities between countries

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

Evidence of cancer inequalities between countries

Age-standardize (world population) incidence and mortality rates of all cancer types, by average of socioeconomic development in 2012.

Figure: Wild C.P., Weiderpass E., Stewart B.W., editors (2020). World Cancer Report: Cancer Research for Cancer Prevention. Lyon, France: International Agency for Research on Cancer.

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

Evidence of cancer inequalities within countries

Net survival estimation on EPIC 000000

Evidence of cancer inequalities within countries

Rate ratios and the corresponding 95% CI of mortality from all cancer combined for men with a low versus high education level

Figure: Wild C.P., Weiderpass E., Stewart B.W., editors (2020). World Cancer Report: Cancer Research for Cancer Prevention. Lyon, France: International Agency for Research on Cancer.

 The global cancer burden
 Survival analysis (overview)
 The concept of net survival
 Net survival estimation on EPIC

 0000
 0000
 0000
 0000
 00000

```
Survival analysis
```


 \cdot *T* = "Time of the event"

 The global cancer burden
 Survival analysis (overview)
 The concept of net survival
 Net survival estimation on EPIC

 0000
 0000
 0000
 00000

```
Survival analysis
```


- \cdot *T* = "Time of the event"
- $S(t) = \mathbb{P}(T > t)$ Survival function


```
Survival analysis
```


- T = "Time of the event"
- $\cdot S(t) = \mathbb{P}(T > t)$ Survival function
- $\cdot \ \lambda(t) = \lim_{dt \to 0} rac{1}{dt} \mathbb{P}(t \leq T < t + dt \,|\, T > t)$ Hazard function

- T = "Time of the event"
- $\cdot S(t) = \mathbb{P}(T > t)$ Survival function
- $\cdot \ \lambda(t) = \lim_{dt \to 0} rac{1}{dt} \mathbb{P}(t \leq T < t + dt \,|\, T > t)$ Hazard function

Main objective of survival analysis: estimation of S(t) or $\lambda(t)$.

Survival analysis (overview)

The concept of net survival

Net survival estimation on EPIC 000000

Survival analysis

Life is not easy

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

Survival analysis

Life is not easy

Individuals transitioning to a competing event are informative while they are at risk!

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

Survival analysis Censoring

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

Survival analysis

Censoring

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

Survival analysis

Censoring

Censored individuals contribute to hazard estimation when they are still at risk

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

The observed cancer survival

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

The observed cancer survival

· Not all cancer patients die because of their cancer

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

The observed cancer survival

- · Not all cancer patients die because of their cancer
- · Overall survival is not only determined by cancer

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

The observed cancer survival

- · Not all cancer patients die because of their cancer
- · Overall survival is not only determined by cancer
- · Genetic, demographic and lifestyle factors depend on general population mortality

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

The observed cancer survival

- · Not all cancer patients die because of their cancer
- · Overall survival is not only determined by cancer
- · Genetic, demographic and lifestyle factors depend on general population mortality

When we want to

· Test the efficiency of health-care systems

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

The observed cancer survival

- · Not all cancer patients die because of their cancer
- · Overall survival is not only determined by cancer
- · Genetic, demographic and lifestyle factors depend on general population mortality

When we want to

- · Test the efficiency of health-care systems
- · Compare cancer survival among different countries or periods

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

The observed cancer survival

- · Not all cancer patients die because of their cancer
- · Overall survival is not only determined by cancer
- · Genetic, demographic and lifestyle factors depend on general population mortality

When we want to

- · Test the efficiency of health-care systems
- \cdot Compare cancer survival among different countries or periods
- · Measure the cancer burden among different populations

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

The observed cancer survival

- · Not all cancer patients die because of their cancer
- · Overall survival is not only determined by cancer
- · Genetic, demographic and lifestyle factors depend on general population mortality

When we want to

- · Test the efficiency of health-care systems
- · Compare cancer survival among different countries or periods
- · Measure the cancer burden among different populations

we need a mortality indicator which is independent of the general population mortality

Survival analysis (overview)

The concept of net survival • 000 Net survival estimation on EPIC 000000

The concept of net survival

Net survival is the survival that would be observed in a **hypothetical world** where cancer would be the only cause of death

Survival analysis (overview)

The concept of net survival • 000 Net survival estimation on EPIC 000000

The concept of net survival

Net survival is the survival that would be observed in a **hypothetical world** where cancer would be the only cause of death

Alive
$$\lambda_{\text{Cancer}}(t)$$
 Cancer death

· Clinically denied of sense

Survival analysis (overview)

The concept of net survival • 000 Net survival estimation on EPIC 000000

The concept of net survival

Net survival is the survival that would be observed in a **hypothetical world** where cancer would be the only cause of death

Alive
$$\lambda_{\text{Cancer}}(t)$$
 Cancer death

- · Clinically denied of sense
- $\cdot\,$ The only indicator allowing to measure the effect of cancer independently of the other causes of death

Survival analysis (overview)

The concept of net survival • 000 Net survival estimation on EPIC 000000

The concept of net survival

Net survival is the survival that would be observed in a **hypothetical world** where cancer would be the only cause of death

Alive
$$\lambda_{Cancer}(t)$$
 Cancer death

- · Clinically denied of sense
- $\cdot\,$ The only indicator allowing to measure the effect of cancer independently of the other causes of death

How to estimate survival in a hypothetical world?

Survival analysis (overview)

The concept of net survival $0 \bullet 00$

Net survival estimation on EPIC 000000

Cause-specific survival

If causes of death are available:

Survival analysis (overview)

The concept of net survival $0 \bullet 00$

Net survival estimation on EPIC 000000

Cause-specific survival

If causes of death are available:

Survival analysis (overview)

The concept of net survival $0 \bullet 00$

Net survival estimation on EPIC 000000

Cause-specific survival

If causes of death are available:

Survival analysis (overview)

The concept of net survival $0 \bullet 00$

Net survival estimation on EPIC 000000

Cause-specific survival

If causes of death are available:

Main sources of bias

· Causes of death misclassification

Survival analysis (overview)

The concept of net survival $0 \bullet 00$

Net survival estimation on EPIC 000000

Cause-specific survival

If causes of death are available:

- · Causes of death misclassification
 - · Lack of sensitivity/specificity

Survival analysis (overview)

The concept of net survival $0 \bullet 00$

Net survival estimation on EPIC 000000

Cause-specific survival

If causes of death are available:

- · Causes of death misclassification
 - · Lack of sensitivity/specificity
 - · Identification of the underlying cause of death

Survival analysis (overview)

The concept of net survival $0 \bullet 00$

Net survival estimation on EPIC 000000

Cause-specific survival

If causes of death are available:

- · Causes of death misclassification
 - · Lack of sensitivity/specificity
 - · Identification of the underlying cause of death
- $\cdot\,$ Causes of death are not always available and/or reliable

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

Relative survival

The global cancer burdenSurvival analysis (overview)The concept of net survival000000000000

Net survival estimation on EPIC 000000

Relative survival

$$\lambda_{\text{Overall}}(t; x, z, a) = \lambda_{\text{Cancer}}(t; x, a) + \lambda_{\text{Other}}(a + t; z)$$

a: age at diagnosis, x, z: set of covariates

The global cancer burdenSurviva00000000

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

Relative survival

Cancer cohort

a: age at diagnosis, x, z: set of covariates

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

Relative survival

a: age at diagnosis, x, z: set of covariates

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

Relative survival

$$\frac{\lambda_{\text{Overall}}(t; x, z, a)}{\text{Cancer cohort}} = \lambda_{\text{Cancer}}(t; x, a) + \frac{\lambda_{\text{Other}}(a + t; z)}{\text{General population}}$$

a: age at diagnosis, x, z: set of covariates

Main source of bias

· Lack of comparability between cancer cohort and general population

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

Relative survival

$$\frac{\lambda_{\text{Overall}}(t; x, z, a)}{\text{Cancer cohort}} = \lambda_{\text{Cancer}}(t; x, a) + \frac{\lambda_{\text{Other}}(a + t; z)}{\text{General population}}$$

a: age at diagnosis, x, z: set of covariates

Main source of bias

· Lack of comparability between cancer cohort and general population

False in general!

 $\lambda_{\rm Other}^{\rm Cancer} \neq \lambda_{\rm Other}^{\rm General \ population}$

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

Relative survival

When it is possible to estimate λ_{Other}

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

Relative survival

When it is possible to estimate λ_{Other}

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

Relative survival

When it is possible to estimate λ_{Other}

Comparability hypothesis: $\lambda_{\text{Overall}}^{H}(t; z) \approx \lambda_{\text{Other}}(t; z)$ for all $t \ge 0$.

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

Relative survival

When it is possible to estimate λ_{Other}

 $\begin{array}{ll} \mbox{Comparability hypothesis:} & \lambda^{H}_{\rm Overall}(t;z) \approx \lambda_{\rm Other}(t;z) \mbox{ for all } t \geq 0. \end{array}$ Relative survival estimation: $\lambda_{\rm Overall}(t;x,z) = \lambda_{\rm Cancer}(t;x) + \lambda^{H}_{\rm Overall}(t;z)$

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

Relative survival

When it is possible to estimate λ_{Other}

 $\begin{array}{ll} \text{Comparability hypothesis:} & \lambda_{\text{Overall}}^{H}(t;z) \approx \lambda_{\text{Other}}(t;z) \text{ for all } t \geq 0. \end{array}$ Relative survival estimation: $\lambda_{\text{Overall}}(t;x,z) = \lambda_{\text{Cancer}}(t;x) + \lambda_{\text{Overall}}^{H}(t;z)$

Acess to two comparable populations is unsual/difficult

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC •00000

Net survival estimation on EPIC cohort

Javier González-Delgado, Vivian Viallon³, Grégoire Rey⁴ and Hadrien Charvat⁵

- 3. Nutritional Methodology and Biostatistics Branch, International Agency for Research on Cancer, Lyon, France.
 - 4 Inserm, Centre d'épidémiologie sur les causes médicales de décès (CépiDc), Le Kremlin-Bicêtre.
 - 5. Cancer Surveillance Branch, International Agency for Research on Cancer, Lyon, France.

Net survival estimation on EPIC cohort

Javier González-Delgado, Vivian Viallon³, Grégoire Rey⁴ and Hadrien Charvat⁵

 Nutritional Methodology and Biostatistics Branch, International Agency for Research on Cancer, Lyon, France. 4 Inserm, Centre d'épidémiologie sur les causes médicales de décès (CépiDc), Le Kremlin-Bicêtre.
 5. Cancer Surveillance Branch, International Agency for Research on Cancer, Lyon, France.

European Prospective Investigation into Cancer and Nutrition (EPIC)²

- \cdot ~521.000 participants recruited across 23 European centers
- · Followed for almost 15 years
- · More than 58.000 reported deaths
- $\cdot\,$ 75 covariates describing dietary exposure, lifestyle factors, anthropometry and biological parameters
- · Acess to high quality cause of death information
- · 67.000 participants diagnosed with cancer

²International Agency for Research on Cancer. EPIC study. 2020. Retrieved from https://epic.iarc.fr

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 00000

Net survival estimation on EPIC cohort

General population and EPIC cohort are not comparable

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 00000

Net survival estimation on EPIC cohort

General population and EPIC cohort are not comparable

EPIC relative survival estimate using general population mortality to estimate λ_{Other} .

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 00000

Net survival estimation on EPIC cohort

General population and EPIC cohort are not comparable

EPIC relative survival estimate using general population mortality to estimate $\lambda_{\rm Other}.$

Survival — Net survival (Pohar-Perme, HMD lifetable) — Overall survival (Kaplan-Meier)

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC

Net survival estimation on EPIC cohort

General population and EPIC cohort are not comparable

EPIC $\lambda_{\rm Other}$ and general population hazard estimates

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

Net survival estimation on EPIC cohort

General population and EPIC cohort are not comparable

EPIC $\lambda_{\rm Other}$ and general population hazard estimates

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC

Net survival estimation on EPIC cohort

Relative and cause-specific survival

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

Net survival estimation on EPIC cohort

Relative and cause-specific survival

Survival — Cause-specific survival (mexhaz) — Relative net survival (mexhaz)

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC

Net survival estimation on EPIC cohort

Relative and cause-specific survival

Survival — Cause-specific survival (mexhaz) — Relative net survival (mexhaz)

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC

Net survival estimation on EPIC cohort

Relative and cause-specific survival: taking covariates into account

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

Net survival estimation on EPIC cohort

Relative and cause-specific survival: taking covariates into account

Survival analysis (overview)

The concept of net survival 0000

Net survival estimation on EPIC 000000

Net survival estimation on EPIC cohort

Relative and cause-specific survival: taking covariates into account

Survival analysis (overview)

The concept of net survival

Net survival estimation on EPIC 000000

Some conclusions

• Relative and cause-specific survival curves are superimposed or coincident within the CI.

- · Relative and cause-specific survival curves are superimposed or coincident within the CI.
- · Adjusting by smoking status may correct differences for smoker patients.

- · Relative and cause-specific survival curves are superimposed or coincident within the CI.
- · Adjusting by smoking status may correct differences for smoker patients.
- · Cause-specific method is recommended due to its simplicity.

- · Relative and cause-specific survival curves are superimposed or coincident within the CI.
- · Adjusting by smoking status may correct differences for smoker patients.
- · Cause-specific method is recommended due to its simplicity.
- · But... results can **not** be **generalized** to general population.

- · Relative and cause-specific survival curves are superimposed or coincident within the CI.
- · Adjusting by smoking status may correct differences for smoker patients.
- · Cause-specific method is recommended due to its simplicity.
- · But... results can **not** be **generalized** to general population.

Thank you for your attention!